skip to main content
10.1145/1964921.1964935acmconferencesArticle/Chapter ViewAbstractPublication PagessiggraphConference Proceedingsconference-collections
research-article

HDR-VDP-2: a calibrated visual metric for visibility and quality predictions in all luminance conditions

Published:25 July 2011Publication History

ABSTRACT

Visual metrics can play an important role in the evaluation of novel lighting, rendering, and imaging algorithms. Unfortunately, current metrics only work well for narrow intensity ranges, and do not correlate well with experimental data outside these ranges. To address these issues, we propose a visual metric for predicting visibility (discrimination) and quality (mean-opinion-score). The metric is based on a new visual model for all luminance conditions, which has been derived from new contrast sensitivity measurements. The model is calibrated and validated against several contrast discrimination data sets, and image quality databases (LIVE and TID2008). The visibility metric is shown to provide much improved predictions as compared to the original HDR-VDP and VDP metrics, especially for low luminance conditions. The image quality predictions are comparable to or better than for the MS-SSIM, which is considered one of the most successful quality metrics. The code of the proposed metric is available on-line.

Skip Supplemental Material Section

Supplemental Material

tp013_11.mp4

mp4

26 MB

References

  1. Artal, P., and Navarro, R. 1994. Monochromatic modulation transfer function of the human eye for different pupil diameters: an analytical expression. J. Opt. Soc. Am. A 11, 1, 246--249.Google ScholarGoogle ScholarCross RefCross Ref
  2. Aydin, T. O., Mantiuk, R., Myszkowski, K., and Seidel, H.-P. 2008. Dynamic range independent image quality assessment. ACM Trans. on Graphics (SIGGRAPH'08) 27, 3, 69. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Aydin, T. O., Čadík, M., Myszkowski, K., and Seidel, H.-P. 2010. Video quality assessment for computer graphics applications. ACM Trans. Graph. 29, 161:1--161:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Barten, P. G. J. 1999. Contrast sensitivity of the human eye and its effects on image quality. SPIE Press.Google ScholarGoogle Scholar
  5. Blackwell, H. 1946. Contrast thresholds of the human eye. Journal of the Optical Society of America 36, 11, 624--632.Google ScholarGoogle ScholarCross RefCross Ref
  6. CIE. 1951. In CIE Proceedings, vol. 1, 37.Google ScholarGoogle Scholar
  7. Daly, S., Co, E., and Rochester, N. 1994. A visual model for optimizing the design of image processingalgorithms. In Proc. of IEEE ICIP, vol. 2, 16--20.Google ScholarGoogle Scholar
  8. Daly, S. 1990. Application of a noise-adaptive contrast sensitivity function to image data compression. Optical Engineering 29, 08, 977--987.Google ScholarGoogle ScholarCross RefCross Ref
  9. Daly, S. 1993. Digital Images and Human Vision. MIT Press, ch. The Visible Differences Predictor: An Algorithm for the Assessment of Image Fidelity, 179--206. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. De Valois, R., Albrecht, D., and Thorell, L. 1982. Spatial frequency selectivity of cells in macaque visual cortex. Vision Research 22, 5, 545--559.Google ScholarGoogle ScholarCross RefCross Ref
  11. Ferwerda, J., Pattanaik, S., Shirley, P., and Greenberg, D. 1996. A model of visual adaptation for realistic image synthesis. In Proc. of SIGGRAPH 96, 249--258. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Foley, J. 1994. Human luminance pattern-vision mechanisms: masking experiments require a new model. Journal of the Optical Society of America A 11, 6, 1710--1719.Google ScholarGoogle ScholarCross RefCross Ref
  13. Georgeson, M., and Georgeson, J. 1987. Facilitation and masking of briefly presented gratings: time-course and contrast dependence. Vision Research 27, 3, 369--379.Google ScholarGoogle ScholarCross RefCross Ref
  14. Georgeson, M. A., and Sullivan, G. D. 1975. Contrast constancy: deblurring in human vision by spatial frequency channels. J. Physiol. 252, 3 (Nov.), 627--656.Google ScholarGoogle ScholarCross RefCross Ref
  15. He, S., and MacLeod, D. 1998. Contrast-modulation flicker: Dynamics and spatial resolution of the light adaptation process. Vision Res 38, 7, 985--1000.Google ScholarGoogle ScholarCross RefCross Ref
  16. Hess, R., Sharpe, L., and Nordby, K. 1990. Night Vision: Basic, Clinical and Applied Aspects. Cambridge University Press.Google ScholarGoogle Scholar
  17. Ijspeert, J., van den Berg, T., and Spekreijse, H. 1993. An improved mathematical description of the foveal visual point spread function with parameters for age, pupil size and pigmentation. Vision research 33, 1, 15--20.Google ScholarGoogle Scholar
  18. ITU-R-BT.500-11, 2002. Methodology for the subjective assessment of the quality of television pictures.Google ScholarGoogle Scholar
  19. Lee, B., Dacey, D., Smith, V., and Pokorny, J. 1999. Horizontal cells reveal cone type-specific adaptation in primate retina. Proceedings of the National Academy of Sciences of the United States of America 96, 25, 14611.Google ScholarGoogle Scholar
  20. Lovell, P., Párraga, C., Troscianko, T., Ripamonti, C., and Tolhurst, D. 2006. Evaluation of a multiscale color model for visual difference prediction. ACM Transactions on Applied Perception (TAP) 3, 3, 155--178. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Lubin, J. 1995. A visual discrimination model for imaging system design and evaluation. World Scientific Publishing Company, 245.Google ScholarGoogle Scholar
  22. Lukin, A. 2009. Improved Visible Differences Predictor Using a Complex Cortex Transform. International Conference on Computer Graphics and Vision (GraphiCon).Google ScholarGoogle Scholar
  23. MacLeod, D., Williams, D., and Makous, W. 1992. A visual nonlinearity fed by single cones. Vision Res 32, 2, 347--63.Google ScholarGoogle ScholarCross RefCross Ref
  24. Mantiuk, R., Daly, S., Myszkowski, K., and Seidel, H. 2005. Predicting visible differences in high dynamic range images: model and its calibration. In Proc. SPIE, vol. 5666, 204--214.Google ScholarGoogle Scholar
  25. Mantiuk, R., Daly, S., and Kerofsky, L. 2008. Display adaptive tone mapping. ACM Transactions on Graphics (Proc. of SIGGRAPH) 27, 3, 68. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Mantiuk, R., Rempel, A. G., and Heidrich, W. 2009. Display considerations for night and low-illumination viewing. In Proc. of APGV '09, 53--58. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Marimont, D., and Wandell, B. 1994. Matching color images: The effects of axial chromatic aberration. Journal of the Optical Society of America A 11, 12, 3113--3122.Google ScholarGoogle ScholarCross RefCross Ref
  28. Meese, T., and Summers, R. 2007. Area summation in human vision at and above detection threshold. Proceedings of the Royal Society B: Biological Sciences 274, 2891--2900.Google ScholarGoogle ScholarCross RefCross Ref
  29. Myszkowski, K., Rokita, P., and Tawara, T. 1999. Perceptually-informed accelerated rendering of high quality walkthrough sequences. Rendering Techniques 99, 5--18. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Pattanaik, S. N., Ferwerda, J. A., Fairchild, M. D., and Greenberg, D. P. 1998. A multiscale model of adaptation and spatial vision for realistic image display. In Proc. of SIGGRAPH'98, 287--298. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Pattanaik, S., Tumblin, J., Yee, H., and Greenberg, D. 2000. Time-dependent visual adaptation for realistic image display. In Proc. of SIGGRAPH'00, 47--54. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Ponomarenko, N., Battisti, F., Egiazarian, K., Astola, J., and Lukin, V. 2009. Metrics performance comparison for color image database. In 4th int. workshop on video processing and quality metrics for consumer electronics (QoMEX).Google ScholarGoogle Scholar
  33. Ramanarayanan, G., Ferwerda, J., Walter, B., and Bala, K. 2007. Visual equivalence: towards a new standard for image fidelity. ACM Trans. on Graphics (SIGGRAPH'07), 76. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Ramasubramanian, M., Pattanaik, S. N., and Greenberg, D. P. 1999. A perceptually based physical error metric for realistic image synthesis. In Proc. of SIGGRAPH '99, 73--82. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Richter, T. 2009. On the mDCT-PSNR image quality index. In Quality of Multimedia Experience, 2009. QoMEx, 53--58.Google ScholarGoogle ScholarCross RefCross Ref
  36. Ritschel, T., Ihrke, M., Frisvad, J. R., Coppens, J., Myszkowski, K., and Seidel, H.-P. 2009. Temporal Glare: Real-Time Dynamic Simulation of the Scattering in the Human Eye. Computer Graphics Forum 28, 2, 183--192.Google ScholarGoogle ScholarCross RefCross Ref
  37. Rohaly, A., Ahumada Jr, A., and Watson, A. 1997. Object detection in natural backgrounds predicted by discrimination performance and models. Vision Research 37, 23, 3225--3235.Google ScholarGoogle ScholarCross RefCross Ref
  38. Rovamo, J., Kukkonen, H., and Mustonen, J. 1998. Foveal optical modulation transfer function of the human eye at various pupil sizes. Journal of the Optical Society of America A 15, 9, 2504--2513.Google ScholarGoogle ScholarCross RefCross Ref
  39. Sheikh, H., Sabir, M., and Bovik, A. 2006. A Statistical Evaluation of Recent Full Reference Image Quality Assessment Algorithms. IEEE Transactions on Image Processing 15, 11, 3440--3451. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Simoncelli, E., and Freeman, W. 2002. The steerable pyramid: a flexible architecture for multi-scale derivative computation. In Proceedings., International Conference on Image Processing, IEEE Comput. Soc. Press, vol. 3, 444--447. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Smith Jr, R., and Swift, D. 1985. Spatial-frequency masking and Birdsalls theorem. Journal of the Optical Society of America A 2, 9, 1593--1599.Google ScholarGoogle ScholarCross RefCross Ref
  42. Stockman, A., and Sharpe, L. 2000. The spectral sensitivities of the middle-and long-wavelength-sensitive cones derived from measurements in observers of known genotype. Vision Res 40, 13, 1711--1737.Google ScholarGoogle ScholarCross RefCross Ref
  43. Stromeyer, C. F., and Julesz, B. 1972. Spatial-Frequency Masking in Vision: Critical Bands and Spread of Masking. Journal of the Optical Society of America 62, 10 (Oct.), 1221.Google ScholarGoogle ScholarCross RefCross Ref
  44. van den Berg, T., IJspeert, J., and de Waard, P. 1991. Dependence of intraocular straylight on pigmentation and light transmission through the ocular wall. Vision Res 31, 7-8, 1361--7.Google ScholarGoogle ScholarCross RefCross Ref
  45. Vos, J., and van den Berg, T. 1999. Report on disability glare. CIE Research Note 135, 1.Google ScholarGoogle Scholar
  46. Wang, Z., and Bovik, A. C. 2006. Modern Image Quality Assessment. Morgan & Claypool.Google ScholarGoogle Scholar
  47. Wang, Z., Simoncelli, E., and Bovik, A. 2003. Multi-scale structural similarity for image quality assessment. In Asilomar Conference on Signals, Systems & Computers, 2003, 1398--1402.Google ScholarGoogle Scholar
  48. Wang, Z., Bovik, A., Sheikh, H., and Simoncelli, E. 2004. Image Quality Assessment: From Error Visibility to Structural Similarity. IEEE Transactions on Image Processing 13, 4, 600--612. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Watson, A., and Ahumada Jr, A. 2005. A standard model for foveal detection of spatial contrast. Journal of Vision 5, 9, 717--740.Google ScholarGoogle ScholarCross RefCross Ref
  50. Watson, A., and Pelli, D. 1983. QUEST: A Bayesian adaptive psychometric method. Perception & Psychophysics 33, 2, 113--120.Google ScholarGoogle ScholarCross RefCross Ref
  51. Watson, A., and Solomon, J. 1997. Model of visual contrast gain control and pattern masking. Journal of the Optical Society of America A 14, 9, 2379--2391.Google ScholarGoogle ScholarCross RefCross Ref
  52. Watson, A. 1987. The cortex transform: Rapid computation of simulated neural images. Computer Vision, Graphics, and Image Processing 39, 3, 311--327. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. Whitaker, D., Steen, R., and Elliott, D. 1993. Light scatter in the normal young, elderly, and cataractous eye demonstrates little wavelength dependency. Optometry and Vision Science 70, 11, 963--968.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. HDR-VDP-2: a calibrated visual metric for visibility and quality predictions in all luminance conditions

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      SIGGRAPH '11: ACM SIGGRAPH 2011 papers
      August 2011
      869 pages
      ISBN:9781450309431
      DOI:10.1145/1964921

      Copyright © 2011 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 25 July 2011

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      SIGGRAPH '11 Paper Acceptance Rate82of432submissions,19%Overall Acceptance Rate1,822of8,601submissions,21%

      Upcoming Conference

      SIGGRAPH '24

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader