skip to main content
10.1145/1998196.1998233acmconferencesArticle/Chapter ViewAbstractPublication PagessocgConference Proceedingsconference-collections
research-article

Kinetic convex hulls and delaunay triangulations in the black-box model

Authors Info & Claims
Published:13 June 2011Publication History

ABSTRACT

Over the past decade, the kinetic-data-structures framework has become the standard in computational geometry for dealing with moving objects. A fundamental assumption underlying the framework is that the motions of the objects are known in advance. This assumption severely limits the applicability of KDSs. We study KDSs in the black-box model, which is a hybrid of the KDS model and the traditional time-slicing approach. In this more practical model we receive the position of each object at regular time steps and we have an upper bound on dmax, the maximum displacement of any point in one time step. We study the maintenance of the convex hull and the Delaunay triangulation of a planar point set P in the black-box model, under the following assumption on dmax: there is some constant k such that for any point p ∑ P the disk of radius dmax contains at most k points. We analyze our algorithms in terms of ∑k , the so-called k-spread of P. We show how to update the convex hull at each time step in O(k∑k log2 n) amortized time. For the Delaunay triangulation our main contribution is an analysis of the standard edge-flipping approach; we show that the number of flips is O(k2k2) at each time step.

References

  1. P.K. Agarwal, L.J. Guibas, H. Edelsbrunner, J. Erickson, M. Isard, S. Har-Peled, J. Hershberger, C. Jensen, L. Kavraki, P. Koehl, M. Lin, D. Manocha, D. Metaxas, B. Mirtich, D. Mount, S. Muthukrishnan, D. Pai, E. Sacks, J. Snoeyink, S. Suri, and O. Wolefson. Algorithmic issues in modelling motion. ACM Comput. Surv. 34:550--572 (2002). Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. P.K. Agarwal, B. Sadri, and H. Yu. Untangling triangulations through local explorations. In Proc. 24th ACM Sympos. Comput. Geom., pages 288--297, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. J. Basch, L.J. Guibas, and J. Hershberger. Data structures for mobile data. In Proc. 8th ACM-SIAM Sympos. Discr. Algorithms, pages 747--756, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. M. de Berg, M.van Kreveld, M. Overmars, O. Schwartzkopf. Computational Geometry: Algorithms and Applications. Springer-Verlag, Berlin, Germany 3rd edition, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. P.M. Manhaes de Castro, J. Tournois, P. Alliez, and O. Devillers. Filtering relocations on a Delaunay triangulation. In phProc. Sympos. Geometry Processing, pages 1465--1474, 2009 Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. T. Chan. Output-sensitive results on convex hulls, extreme points, and related problems. Discr. Comput. Geom. 16: 369--387 (1996).Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. F. Chin, J. Snoeyink and C.A. Wang. Finding the medial axis of a simple polygon in linear time. Discr. Comput. Geom. 21:405--420 (1999).Google ScholarGoogle ScholarCross RefCross Ref
  8. M. Cho, D.M. Mount, and E. Park. Maintaining nets and net trees under incremental motion. In Proc. 20th Sympos. Algo. Comput., pages 1134--1143, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. O. Devillers. On deletion in Delaunay triangulations. In Proc. 15th ACM Sympos. Comput. Geom., pages 181--188, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. J. Erickson. Dense Point Sets Have Sparse Delaunay Triangulations. Discr. Comput. Geom. 30:83--115 (2005). Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. J. Gao, L.J. Guibas, A. Nguyen. Deformable spanners and applications. In Proc. 20th ACM Sympos. Comput. Geom., pages 190--199, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. L.J. Guibas. Kinetic data structures--a state-of-the-art report. In Proc. 3rd Workshop Algorithmic Found. Robot., pages 191--209, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. L.J. Guibas. Kinetic data structures. In: D. Mehta and S. Sahni (editors), Handbook of Data Structures and Applications, Chapman and Hall/CRC, 2004.Google ScholarGoogle Scholar
  14. L.J. Guibas. Motion. In: J. Goodman and J. O'Rourke (eds.), Handbook of Discrete and Computational Geometry (2nd edition), pages 1117--1134. CRC Press, 2004.Google ScholarGoogle Scholar
  15. S. Kahan. A model for data in motion. In Proc. 23rd ACM Sympos. Theory Comput., pages 267--277, 1991. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. D.M. Mount, N.S. Netanyahu, C.D. Piatko, R. Silverman, and A.Y. Wu. A computational framework for incremental motion. In Proc. 20th ACM Sympos. Comput. Geom., pages 200--209, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. D. Russel (2007). Kinetic Datastructures in Practise. Ph.D. thesis. Stanford University: U.S.A. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. R. Shewchuk. Star splaying: an algorithm for repairing Delaunay triangulations and convex hulls. In Proc. 21st ACM Sympos. Comput. Geom., pages 237--246, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. K. Yi and Q. Zhang. Multi-dimensional online tracking. In Proc. 20th ACM-SIAM Sympos. Discr. Algo., pages 1098--1107, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Kinetic convex hulls and delaunay triangulations in the black-box model

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      SoCG '11: Proceedings of the twenty-seventh annual symposium on Computational geometry
      June 2011
      532 pages
      ISBN:9781450306829
      DOI:10.1145/1998196

      Copyright © 2011 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 13 June 2011

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      Overall Acceptance Rate625of1,685submissions,37%

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader