skip to main content
10.1145/2024156.2024163acmconferencesArticle/Chapter ViewAbstractPublication Pagessiggraph-asiaConference Proceedingsconference-collections
research-article

Multiview face capture using polarized spherical gradient illumination

Published:12 December 2011Publication History

ABSTRACT

We present a novel process for acquiring detailed facial geometry with high resolution diffuse and specular photometric information from multiple viewpoints using polarized spherical gradient illumination. Key to our method is a new pair of linearly polarized lighting patterns which enables multiview diffuse-specular separation under a given spherical illumination condition from just two photographs. The patterns -- one following lines of latitude and one following lines of longitude -- allow the use of fixed linear polarizers in front of the cameras, enabling more efficient acquisition of diffuse and specular albedo and normal maps from multiple viewpoints. In a second step, we employ these albedo and normal maps as input to a novel multi-resolution adaptive domain message passing stereo reconstruction algorithm to create high resolution facial geometry. To do this, we formulate the stereo reconstruction from multiple cameras in a commonly parameterized domain for multiview reconstruction. We show competitive results consisting of high-resolution facial geometry with relightable reflectance maps using five DSLR cameras. Our technique scales well for multiview acquisition without requiring specialized camera systems for sensing multiple polarization states.

Skip Supplemental Material Section

Supplemental Material

a129-ghosh.mov

mov

21.4 MB

References

  1. Alexander, O., Rogers, M., Lambeth, W., Chiang, J.-Y., Ma, W.-C., Wang, C.-C., and Debevec, P. 2010. The Digital Emily Project: Achieving a photoreal digital actor. IEEE Computer Graphics and Applications 30 (July), 20--31. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Beeler, T., Bickel, B., Beardsley, P., Sumner, B., and Gross, M. 2010. High-quality single-shot capture of facial geometry. ACM Trans. Graph. 29 (July), 40:1--40:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Bickel, B., Botsch, M., Angst, R., Matusik, W., Otaduy, M., Pfister, H., and Gross, M. 2007. Multi-scale capture of facial geometry and motion. ACM Transactions on Graphics 26, 3, 33: 1--10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Bradley, D., Heidrich, W., Popa, T., and Sheffer, A. 2010. High resolution passive facial performance capture. ACM Trans. Graph. 29 (July), 41:1--41:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Davis, J., Nehab, D., Ramamoorthi, R., and Rusinkiewicz, S. 2005. Spacetime stereo: A unifying framework for depth from triangulation. PAMI 27, 2, 296--302. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Debevec, P., Hawkins, T., Tchou, C., Duiker, H.-P., Sarokin, W., and Sagar, M. 2000. Acquiring the reflectance field of a human face. In Proceedings of ACM SIGGRAPH 2000, 145--156. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Furukawa, Y., and Ponce, J. 2009. Dense 3D motion capture for human faces. In Proc. of CVPR 09.Google ScholarGoogle Scholar
  8. Fyffe, G., Hawkins, T., Watts, C., Ma, W.-C., and Debevec, P. 2011. Comprehensive facial performance capture. Computer Graphics Forum (Proc. EUROGRAPHICS) 30, 2.Google ScholarGoogle ScholarCross RefCross Ref
  9. Ghosh, A., Chen, T., Peers, P., Wilson, C. A., and Debevec, P. 2010. Circularly polarized spherical illumination reflectometry. ACM Trans. Graph. 29 (December), 162:1--162:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Hernandez, C., Vogiatzis, G., Brostow, G. J., Stenger, B., and Cipolla, R. 2007. Non-rigid photometric stereo with colored lights. In Proc. IEEE International Conference on Computer Vision, 1--8.Google ScholarGoogle Scholar
  11. Klaudiny, M., Hilton, A., and Edge, J. 2010. High-detail 3D capture of facial performance. In International Symposium 3D Data Processing, Visualization and Transmission (3DPVT).Google ScholarGoogle Scholar
  12. Kolmogorov, V. 2006. Convergent tree-reweighted message passing for energy minimization. IEEE Trans. Pattern Anal. Mach. Intell. 28 (October), 1568--1583. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Ma, W.-C., Hawkins, T., Peers, P., Chabert, C.-F., Weiss, M., and Debevec, P. 2007. Rapid acquisition of specular and diffuse normal maps from polarized spherical gradient illumination. In Rendering Techniques, 183--194. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Ma, W.-C., Jones, A., Chiang, J.-Y., Hawkins, T., Frederiksen, S., Peers, P., Vukovic, M., Ouhyoung, M., and Debevec, P. 2008. Facial performance synthesis using deformation-driven polynomial displacement maps. ACM TOG (Proc. SIGGRAPH Asia). Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Malzbender, T., Wilburn, B., Gelb, D., and Ambrisco, B. 2006. Surface enhancement using real-time photometric stereo and reflectance transformation. In Rendering Techniques, 245--250. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Nehab, D., Rusinkiewicz, S., Davis, J., and Ramamoorthi, R. 2005. Efficiently combining positions and normals for precise 3D geometry. ACM TOG 24, 3, 536--543. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Rusinkiewicz, S., Hall-Holt, O., and Levoy, M. 2002. Real-time 3D model acquisition. ACM TOG 21, 3, 438--446. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Wenger, A., Gardner, A., Tchou, C., Unger, J., Hawkins, T., and Debevec, P. 2005. Performance relighting and reflectance transformation with time-multiplexed illumination. ACM TOG 24, 3, 756--764. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Weyrich, T., Matusik, W., Pfister, H., Bickel, B., Donner, C., Tu, C., McAndless, J., Lee, J., Ngan, A., Jensen, H. W., and Gross, M. 2006. Analysis of human faces using a measurement-based skin reflectance model. ACM TOG 25, 3, 1013--1024. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Wilson, C. A., Ghosh, A., Peers, P., Chiang, J.-Y., Busch, J., and Debevec, P. 2010. Temporal upsampling of performance geometry using photometric alignment. ACM Trans. Graph. 29 (April), 17:1--17:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Woodford, O. J., Torr, P. H. S., Reid, I. D., and Fitzgibbon, A. W. 2009. Global stereo reconstruction under second order smoothness priors. IEEE Transactions on Pattern Analysis and Machine Intelligence 31, 12, 2115--2128. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Zhang, S., and Huang, P. 2006. High-resolution, real-time three-dimensional shape measurement. Optical Engineering 45, 12.Google ScholarGoogle Scholar
  23. Zhang, L., Snavely, N., Curless, B., and Seitz, S. M. 2004. Spacetime faces: high resolution capture for modeling and animation. ACM TOG 23, 3, 548--558. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Zhang, Z. 2000. A flexible new technique for camera calibration. PAMI 22, 11, 1330--1334. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Multiview face capture using polarized spherical gradient illumination

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Conferences
          SA '11: Proceedings of the 2011 SIGGRAPH Asia Conference
          December 2011
          730 pages
          ISBN:9781450308076
          DOI:10.1145/2024156

          Copyright © 2011 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 12 December 2011

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

          Acceptance Rates

          Overall Acceptance Rate178of869submissions,20%

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader