skip to main content
10.1145/2038916.2038928acmconferencesArticle/Chapter ViewAbstractPublication PagesmodConference Proceedingsconference-collections
research-article

Query optimization for massively parallel data processing

Published:26 October 2011Publication History

ABSTRACT

MapReduce has been widely recognized as an efficient tool for large-scale data analysis. It achieves high performance by exploiting parallelism among processing nodes while providing a simple interface for upper-layer applications. Some vendors have enhanced their data warehouse systems by integrating MapReduce into the systems. However, existing MapReduce-based query processing systems, such as Hive, fall short of the query optimization and competency of conventional database systems. Given an SQL query, Hive translates the query into a set of MapReduce jobs sentence by sentence. This design assumes that the user can optimize his query before submitting it to the system. Unfortunately, manual query optimization is time consuming and difficult, even to an experienced database user or administrator. In this paper, we propose a query optimization scheme for MapReduce-based processing systems. Specifically, we embed into Hive a query optimizer which is designed to generate an efficient query plan based on our proposed cost model. Experiments carried out on our in-house cluster confirm the effectiveness of our query optimizer.

References

  1. http://hadoop.apache.org.Google ScholarGoogle Scholar
  2. http://wiki.apache.org/hadoop/hive/languagemanual/joins.Google ScholarGoogle Scholar
  3. http://www.aster.com.Google ScholarGoogle Scholar
  4. http://www.greenplum.com.Google ScholarGoogle Scholar
  5. http://www.tpc.org/tpch/.Google ScholarGoogle Scholar
  6. F. N. Afrati and J. D. Ullman. Optimizing joins in a map-reduce environment. EDBT, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. P. A. Bernstein, N. Goodman, E. Wong, C. L. Reeve, and J. B. Rothnie, Jr. Query processing in a system for distributed databases (sdd-1). ACM Trans. Database Syst., 6(4):602--625, 1981. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Y. Cao, C. Chen, F. Guo, D. Jiang, Y. Lin, B. C. Ooi, H. T. Vo, S. Wu, and Q. Xu. Es2: A cloud data storage system for supporting both oltp and olap. In ICDE, pages 291--302, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. S. Chaudhuri. An overview of query optimization in relational systems. In PODS, pages 34--43, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. C. Chen, G. Chen, D. Jiang, B. C. Ooi, L. Shi, H. T. Vo, and S. Wu. E3: an elastic execution engine for scalable data processing. Technical Report, National University of Singapore, School of Computing. TRA07/11, 2011.Google ScholarGoogle Scholar
  11. C. Chen, G. Chen, D. Jiang, B. C. Ooi, H. T. Vo, S. Wu, and Q. Xu. Providing scalable database services on the cloud. In WISE, pages 1--19, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. G. Chen, H. T. Vo, S. Wu, B. C. Ooi, and M. T. Özsu. A framework for supporting dbms-like indexes in the cloud. In VLDB, 2011.Google ScholarGoogle Scholar
  13. M.-S. Chen, P. S. Yu, and K.-L. Wu. Optimization of parallel execution for multi-join queries. IEEE Trans. on Knowl. and Data Eng., 8(3):416--428, 1996. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein, K. Elmeleegy, and R. Sears. Mapreduce online. Technical report, EECS Department, University of California, Berkeley, Oct 2009.Google ScholarGoogle Scholar
  15. J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large clusters. pages 137--150.Google ScholarGoogle Scholar
  16. M. J. Franklin, B. T. Jónsson, and D. Kossmann. Performance tradeoffs for client-server query processing. SIGMOD Rec., 25(2):149--160, 1996. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. E. Friedman, P. Pawlowski, and J. Cieslewicz. Sql/mapreduce: a practical approach to self-describing, polymorphic, and parallelizable user-defined functions. VLDB, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. S. Ganguly, W. Hasan, and R. Krishnamurthy. Query optimization for parallel execution. SIGMOD Rec., 21(2), 1992. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. M. Jarke and J. Koch. Query optimization in database systems. ACM Comput. Surv., 16(2):111--152, 1984. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Y. Jia. Running tpc-h queries on hive. In http://issues.apache.org/jira/browse/HIVE-600, 2009.Google ScholarGoogle Scholar
  21. D. Jiang, B. C. Ooi, L. Shi, and S. Wu. The performance of mapreduce: An in-depth study. PVLDB, 3(1):472--483, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Y. Lin, D. Agrawal, C. Chen, B. C. Ooi, and S. Wu. Llama: leveraging columnar storage for scalable join processing in the mapreduce framework. In SIGMOD Conference, pages 961--972, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. T. Nykiel, M. Potamias, C. Mishra, G. Kollios, and N. Koudas. Mrshare: Sharing across multiple queries in mapreduce. In VLDB, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. Pig latin: a not-so-foreign language for data processing. In SIGMOD, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. K. Ono and G. M. Lohman. Measuring the complexity of join enumeration in query optimization. In VLDB, pages 314--325, 1990. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. V. Poosala, P. J. Haas, Y. E. Ioannidis, and E. J. Shekita. Improved histograms for selectivity estimation of range predicates. SIGMOD Rec., 25(2), 1996. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. R. Stewart. Performance and programmability comparison mapreduce query languages. In Master Thesis, Heriot-Watt University, 2010.Google ScholarGoogle Scholar
  28. A. Thusoo, R. Murthy, J. S. Sarma, Z. Shao, N. Jain, P. Chakka, S. Anthony, H. Liu, and N. Zhang. Hive -- a petabyte scale data warehousing using hadoop. In ICDE, 2010.Google ScholarGoogle ScholarCross RefCross Ref
  29. A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony, H. Liu, P. Wychoff, and R. Murthy. Hive -- a warehousing solution over a map-reduce framework. In VLDB, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. M. Zaharia, D. Borthakur, J. S. Sarma, K. Elmeleegy, S. Shenker, and I. Stoica. Job scheduling for multi-user mapreduce clusters. In Technical Report, UCB/EECS-2009-55, University of California at Berkeley, 2009.Google ScholarGoogle Scholar

Index Terms

  1. Query optimization for massively parallel data processing

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Conferences
          SOCC '11: Proceedings of the 2nd ACM Symposium on Cloud Computing
          October 2011
          377 pages
          ISBN:9781450309769
          DOI:10.1145/2038916

          Copyright © 2011 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 26 October 2011

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

          Acceptance Rates

          Overall Acceptance Rate169of722submissions,23%

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader