skip to main content
10.1145/2063384.2063481acmconferencesArticle/Chapter ViewAbstractPublication PagesscConference Proceedingsconference-collections
research-article

Scalable implementations of accurate excited-state coupled cluster theories: application of high-level methods to porphyrin-based systems

Authors Info & Claims
Published:12 November 2011Publication History

ABSTRACT

The development of reliable tools for excited-state simulations is very important for understanding complex processes in the broad class of light harvesting systems and optoelectronic devices. Over the last years we have been developing equation of motion coupled cluster (EOMCC) methods capable of tackling these problems. In this paper we discuss the parallel performance of EOMCC codes which provide accurate description of excited-state correlation effects. Two aspects are discussed in detail: (1) a new algorithm for the iterative EOMCC methods based on improved parallel task scheduling algorithms, and (2) parallel algorithms for the non-iterative methods describing the effect of triply excited configurations. We demonstrate that the most computationally intensive non-iterative part can take advantage of 210,000 cores of the Cray XT5 system at the Oak Ridge Leadership Computing Facility (OLCF), achieving over 80% parallel efficiency. In particular, we demonstrate the importance of the computationally demanding non-iterative many-body methods in matching experimental level of accuracy for several porphyrin-based systems.

References

  1. E. Aprà, R. Harrison, de Jong. W. A., A. Rendell, V. Tipparaju, S. Xantheas, and R. Olsen. Liquid Water: Obtaining the Right Answer for the Right Reasons. Proceedings of the ACM/IEEE Supercomputing 2009 Conference, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. N. B. Balabanov and K. A. Peterson. Systematically convergent basis sets for transition metals. I. All-electron correlation consistent basis sets for the 3d elements Sc-Zn. Journal of Chemical Physics, 123(6):15, 2005.Google ScholarGoogle ScholarCross RefCross Ref
  3. R. J. Bartlett and M. Musial. Coupled-cluster theory in quantum chemistry. Reviews of Modern Physics, 79(1):291--352, 2007.Google ScholarGoogle ScholarCross RefCross Ref
  4. N. H. F. Beebe and J. Linderberg. Simplifications in the generation and transformation of two-electron integrals in molecular calculations. International Journal of Quantum Chemistry, 7:683--705, 1977.Google ScholarGoogle ScholarCross RefCross Ref
  5. D. Biermann and W. Schmidt. Diels-Alder reactivity of polycyclic aromatic hydrocarbons. 1. Acenes and benzologs. Journal of the American Chemical Society, 102(9):3163--3173, 1980.Google ScholarGoogle ScholarCross RefCross Ref
  6. J. Birks. Photophysics of Aromatic Molecules. Wiley, New York, 1970.Google ScholarGoogle Scholar
  7. J. L. Brédas, J. E. Norton, J. Cornil, and V. Coropceanu. Molecular Understanding of Organic Solar Cells: The Challenges. Accounts of Chemical Research, 42(11):1691--1699, 2009.Google ScholarGoogle ScholarCross RefCross Ref
  8. O. Christiansen, H. Koch, and P. Jörgensen. The second-order approximate coupled cluster singles and doubles model CC2. Chemical Physics Letters, 243(5--6):409--418, 1995.Google ScholarGoogle ScholarCross RefCross Ref
  9. O. Christiansen, H. Koch, and P. Jörgensen. Perturbative triple excitation corrections to coupled cluster singles and doubles excitation energies. Journal of Chemical Physics, 105(4):1451--1459, 1996.Google ScholarGoogle ScholarCross RefCross Ref
  10. D. C. Comeau and R. J. Bartlett. The equation-of-motion coupled-cluster method. Applications to open- and closed-shell reference states. Chemical Physics Letters, 207(4--6):414--423, 1993.Google ScholarGoogle ScholarCross RefCross Ref
  11. N. K. S. Davis, M. Pawlicki, and H. L. Anderson. Expanding the porphyrin π-system by fusion with anthracene. Organic Letters, 10(18):3945--3947, 2008.Google ScholarGoogle ScholarCross RefCross Ref
  12. D. J. Dean and M. Hjorth-Jensen. Coupled-cluster approach to nuclear physics. Physical Review C, 69(5):14, 2004.Google ScholarGoogle ScholarCross RefCross Ref
  13. T. H. Dunning. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. Journal of Chemical Physics, 90(2):1007--1023, 1989.Google ScholarGoogle ScholarCross RefCross Ref
  14. M. Feyereisen, G. Fitzgerald, and A. Komornicki. Use of approximate integrals in ab initio theory. An application in MP2 energy calculations. Chemical Physics Letters, 208(5--6):359--363, 1993.Google ScholarGoogle ScholarCross RefCross Ref
  15. J. Geertsen, M. Rittby, and R. J. Bartlett. The equation-of-motion coupled-cluster method: Excitation energies of Be and CO. Chemical Physics Letters, 164(1):57--62, 1989.Google ScholarGoogle ScholarCross RefCross Ref
  16. S. Hirata. Tensor contraction engine: Abstraction and automated parallel implementation of configuration-interaction, coupled-cluster, and many-body perturbation theories. Journal of Physical Chemistry A, 107(46):9887--9897, 2003.Google ScholarGoogle ScholarCross RefCross Ref
  17. S. Hirata. Symbolic algebra in quantum chemistry. Theoretical Chemistry Accounts, 116(1--3):2--17, 2006.Google ScholarGoogle Scholar
  18. S. Hirata, M. Nooijen, I. Grabowski, and R. J. Bartlett. Perturbative corrections to coupled-cluster and equation-of-motion coupled-cluster energies: A determinantal analysis. Journal of Chemical Physics, 114(9):3919--3928, 2001.Google ScholarGoogle ScholarCross RefCross Ref
  19. H. Imahori, T. Umeyama, and S. Ito. Large pi-Aromatic Molecules as Potential Sensitizers for Highly Efficient Dye-Sensitized Solar Cells. Accounts of Chemical Research, 42(11):1809--1818, 2009.Google ScholarGoogle ScholarCross RefCross Ref
  20. H. Koch, A. S. de Meras, and T. B. Pedersen. Reduced scaling in electronic structure calculations using Cholesky decompositions. Journal of Chemical Physics, 118(21):9481--9484, 2003.Google ScholarGoogle ScholarCross RefCross Ref
  21. H. Koch and P. Jorgensen. Coupled cluster response functions. Journal of Chemical Physics, 93(5):3333--3344, 1990.Google ScholarGoogle ScholarCross RefCross Ref
  22. K. Kowalski, D. J. Dean, M. Hjorth-Jensen, T. Papenbrock, and P. Piecuch. Coupled cluster calculations of ground and excited states of nuclei. Physical Review Letters, 92(13):4, 2004.Google ScholarGoogle ScholarCross RefCross Ref
  23. K. Kowalski, J. R. Hammond, W. A. de Jong, and A. J. Sadlej. Coupled cluster calculations for static and dynamic polarizabilities of C60. Journal of Chemical Physics, 129(22):3, 2008.Google ScholarGoogle ScholarCross RefCross Ref
  24. K. Kowalski, S. Krishnamoorthy, O. Villa, J. R. Hammond, and N. Govind. Active-space completely-renormalized equation-of-motion coupled-cluster formalism: Excited-state studies of green fluorescent protein, free-base porphyrin, and oligoporphyrin dimer. Journal of Chemical Physics, 132(15):11, 2010.Google ScholarGoogle ScholarCross RefCross Ref
  25. K. Kowalski, R. Olson, S. Krishnamoorthy, V. Tipparaju, and E. Aprà. The role of many-body effects in describing low-lying excited states of π-conjugated chromophores: high-level equation-of-motion coupled-cluster studies of fused porphyrin systems. Journal of Chemical Theory and Computation, submitted.Google ScholarGoogle Scholar
  26. K. Kowalski and P. Piecuch. The active-space equation-of-motion coupled-cluster methods for excited electronic states: Full EOMCCSDt. Journal of Chemical Physics, 115(2):643--651, 2001.Google ScholarGoogle ScholarCross RefCross Ref
  27. K. Kowalski and P. Piecuch. New coupled-cluster methods with singles, doubles, and noniterative triples for high accuracy calculations of excited electronic states. Journal of Chemical Physics, 120(4):1715--1738, 2004.Google ScholarGoogle ScholarCross RefCross Ref
  28. A. I. Krylov. Size-consistent wave functions for bond-breaking: the equation-of-motion spin-flip model. Chemical Physics Letters, 338(4--6):375--384, 2001.Google ScholarGoogle ScholarCross RefCross Ref
  29. T. Kuś, V. F. Lotrich, and R. J. Bartlett. Parallel implementation of the equation-of-motion coupled-cluster singles and doubles method and application for radical adducts of cytosine. Journal of Chemical Physics, 130(12):7, 2009.Google ScholarGoogle ScholarCross RefCross Ref
  30. V. Lotrich, N. Flocke, M. Ponton, A. D. Yau, A. Perera, E. Deumens, and R. J. Bartlett. Parallel implementation of electronic structure energy, gradient, and Hessian calculations. Journal of Chemical Physics, 128(19):15, 2008.Google ScholarGoogle ScholarCross RefCross Ref
  31. P. U. Manohar and A. I. Krylov. A noniterative perturbative triples correction for the spin-flipping and spin-conserving equation-of-motion coupled-cluster methods with single and double substitutions. Journal of Chemical Physics, 129(19):10, 2008.Google ScholarGoogle ScholarCross RefCross Ref
  32. H. J. Monkhorst. Calculation of properties with the coupled-cluster method. International Journal of Quantum Chemistry, S11:421--432, 1977.Google ScholarGoogle Scholar
  33. K. Müllen and J. P. Rabe. Nanographenes as active components of single-molecule electronics and how a scanning tunneling microscope puts them to work. Accounts of Chemical Research, 41(4):511--520, 2008.Google ScholarGoogle ScholarCross RefCross Ref
  34. H. Nakatsuji. Cluster expansion of the wavefunction. Excited states. Chemical Physics Letters, 59(2):362--364, 1978.Google ScholarGoogle ScholarCross RefCross Ref
  35. H. Nakatsuji and K. Hirao. Cluster expansion of the wavefunction. Symmetry-adapted-cluster expansion, its variational determination, and extension of open-shell orbital theory. Journal of Chemical Physics, 68(5):2053--2065, 1978.Google ScholarGoogle ScholarCross RefCross Ref
  36. J. Nieplocha, R. J. Harrison, and R. J. Littlefield. Global arrays - a portable shared-memory programming model for distributed memory computers. In Supercomputing '94, Proceedings, Supercomputing Proceedings, page 340, Los Alamitos, 1994. IEEE, Computer Soc Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. J. Nieplocha, R. J. Harrison, and R. J. Littlefield. Global arrays: A nonuniform memory access programming model for high-performance computers. Journal of Supercomputing, 10(2):169--189, 1996. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. M. Nooijen. Many-body similarity transformations generated by normal ordered exponential excitation operators. Journal of Chemical Physics, 104(7):2638--2651, 1996.Google ScholarGoogle ScholarCross RefCross Ref
  39. T. B. Pedersen, F. Aquilante, and R. Lindh. Density fitting with auxiliary basis sets from Cholesky decompositions. Theoretical Chemistry Accounts, 124(1--2):1--10, 2009.Google ScholarGoogle Scholar
  40. P. Piecuch, J. R. Gour, and M. Wloch. Left-Eigenstate Completely Renormalized Equation-of-Motion Coupled-Cluster Methods: Review of Key Concepts, Extension to Excited States of Open-Shell Systems, and Comparison With Electron-Attached and Ionized Approaches. International Journal of Quantum Chemistry, 109(14):3268--3304, 2009.Google ScholarGoogle ScholarCross RefCross Ref
  41. J. R. Platt. Classification of Spectra of Cata-Condensed Hydrocarbons. Journal of Chemical Physics, 17(5):484--495, 1949.Google ScholarGoogle ScholarCross RefCross Ref
  42. K. Raghavachari, G. W. Trucks, J. A. Pople, and M. Head-Gordon. A fifth-order perturbation comparison of electron correlation theories. Chemical Physics Letters, 157(6):479--483, 1989.Google ScholarGoogle ScholarCross RefCross Ref
  43. M. Ratsep, Z. L. Cai, J. R. Reimers, and A. Freiberg. Demonstration and interpretation of significant asymmetry in the low-resolution and high-resolution Q(y) fluorescence and absorption spectra of bacteriochlorophyll a. Journal of Chemical Physics, 134(2):15, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  44. J. R. Reimers, L. E. Hall, M. J. Crossley, and N. S. Hush. Rigid fused oligoporphyrins as potential versatile molecular wires. 2. B3LYP and SCF calculated geometric and electronic properties of 98 oligoporphyrin and related molecules. Journal of Physical Chemistry A, 103(22):4385--4397, 1999.Google ScholarGoogle ScholarCross RefCross Ref
  45. A. J. Sadlej. Medium-size polarized basis sets for high-level correlated calculations of molecular electric properties. Collection of Czechoslovak Chemical Communications, 53(9):1995--2016, 1988.Google ScholarGoogle ScholarCross RefCross Ref
  46. A. Schafer, H. Horn, and R. Ahlrichs. Fully optimized contracted Gaussian basis sets for atoms Li to Kr. Journal of Chemical Physics, 97(4):2571--2577, 1992.Google ScholarGoogle ScholarCross RefCross Ref
  47. T. Shiozaki, K. Hirao, and S. Hirata. Second- and third-order triples and quadruples corrections to coupled-cluster singles and doubles in the ground and excited states. Journal of Chemical Physics, 126(24):11, 2007.Google ScholarGoogle ScholarCross RefCross Ref
  48. J. F. Stanton and R. J. Bartlett. The equation of motion coupled-cluster method. A systematic biorthogonal approach to molecular excitation energies, transition probabilities, and excited state properties. Journal of Chemical Physics, 98(9):7029--7039, 1993.Google ScholarGoogle ScholarCross RefCross Ref
  49. P. J. Stephens, F. J. Devlin, C. F. Chabalowski, and M. J. Frisch. Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields. Journal of Physical Chemistry, 98(45):11623--11627, 1994.Google ScholarGoogle ScholarCross RefCross Ref
  50. A. Tsuda, H. Furuta, and A. Osuka. Syntheses, structural characterizations, and optical and electrochemical properties of directly fused diporphyrins. Journal of the American Chemical Society, 123(42):10304--10321, 2001.Google ScholarGoogle ScholarCross RefCross Ref
  51. A. Tsuda and A. Osuka. Fully conjugated porphyrin tapes with electronic absorption bands that reach into infrared. Science, 293(5527):79--82, 2001.Google ScholarGoogle ScholarCross RefCross Ref
  52. M. Valiev, E. J. Bylaska, N. Govind, K. Kowalski, T. P. Straatsma, H. J. J. Van Dam, D. Wang, J. Nieplocha, E. Aprà, T. L. Windus, and W. de Jong. NWChem: A comprehensive and scalable open-source solution for large scale molecular simulations. Computer Physics Communications, 181(9):1477--1489, 2010.Google ScholarGoogle ScholarCross RefCross Ref
  53. M. R. Wasielewski. Photoinduced electron-transfer in supramolecular systems for artificial photosynthesis. Chemical Reviews, 92(3):435--461, 1992.Google ScholarGoogle ScholarCross RefCross Ref
  54. J. D. Watts and R. J. Bartlett. Economical triple excitation equation-of-motion coupled-cluster methods for excitation energies. Chemical Physics Letters, 233(1--2):81--87, 1995.Google ScholarGoogle ScholarCross RefCross Ref
  55. J. D. Watts and R. J. Bartlett. Iterative and non-iterative triple excitation corrections in coupled-cluster methods for excited electronic states: The EOM-CCSDT-3 and EOM-CCSD((T)) methods. Chemical Physics Letters, 258(5--6):581--588, 1996.Google ScholarGoogle ScholarCross RefCross Ref
  56. J. S. Wu, W. Pisula, and K. Müllen. Graphenes as potential material for electronics. Chemical Reviews, 107(3):718--747, 2007.Google ScholarGoogle ScholarCross RefCross Ref

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in
  • Published in

    cover image ACM Conferences
    SC '11: Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis
    November 2011
    866 pages
    ISBN:9781450307710
    DOI:10.1145/2063384

    Copyright © 2011 ACM

    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    • Published: 12 November 2011

    Permissions

    Request permissions about this article.

    Request Permissions

    Check for updates

    Qualifiers

    • research-article

    Acceptance Rates

    SC '11 Paper Acceptance Rate74of352submissions,21%Overall Acceptance Rate1,516of6,373submissions,24%

PDF Format

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader