skip to main content
research-article

Interactive hybrid simulation of large-scale traffic

Published:12 December 2011Publication History
Skip Abstract Section

Abstract

We present a novel, real-time algorithm for modeling large-scale, realistic traffic using a hybrid model of both continuum and agent-based methods for traffic simulation. We simulate individual vehicles in regions of interest using state-of-the-art agent-based models of driver behavior, and use a faster continuum model of traffic flow in the remainder of the road network. Our key contributions are efficient techniques for the dynamic coupling of discrete vehicle simulation with the aggregated behavior of continuum techniques for traffic simulation. We demonstrate the flexibility and scalability of our interactive visual simulation technique on extensive road networks using both real-world traffic data and synthetic scenarios. These techniques demonstrate the applicability of hybrid techniques to the efficient simulation of large-scale flows with complex dynamics.

Skip Supplemental Material Section

Supplemental Material

References

  1. Algers, S., Bernauer, E., Boero, M., Breheret, L., Taranto, C. D., Dougherty, M., Fox, K., and Gabard, J. F. 1997. SMARTEST project: Review of micro-simulation models. EU project No: RO-97-SC 1059.Google ScholarGoogle Scholar
  2. Aw, A., and Rascle, M. 2000. Resurrection of "second order" models of traffic flow. SIAM journal on applied mathematics 60, 916--938. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Burggraf, O. 1966. Analytical and numerical studies of the structure of steady separated flows. J. of Fluid Mechanics 24, 01, 113--151.Google ScholarGoogle ScholarCross RefCross Ref
  4. Chen, L., Özsu, M., and Oria, V. 2005. Robust and fast similarity search for moving object trajectories. In SIGMOD, ACM, 491--502. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Chen, G., Esch, G., Wonka, P., Mueller, P., and Zhang, E. 2008. Interactive procedural street modeling. In SIGGRAPH 2008, ACM, New York, NY, USA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Cremer, J., Kearney, J., and Willemsen, P. 1997. Directable behavior models for virtual driving scenarios. Trans. Soc. Comput. Simul. Int. 14, 2, 87--96. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Daganzo, C. 1995. Requiem for second-order fluid approximations of traffic flow. Trans. Research Part B 29, 4, 277--286.Google ScholarGoogle ScholarCross RefCross Ref
  8. Devroye, L. 1986. Non-Uniform Random Variate Generatiom. Springer-Verlag.Google ScholarGoogle Scholar
  9. Donikian, S., Moreau, G., and Thomas, G. 1999. Multimodal driving simulation in realistic urban environments. Progress in System and Robot Analysis and Control Design (LNCIS) 243, 321--332.Google ScholarGoogle Scholar
  10. Galin, E., Peytavie, A., Maréchal, N., and Guérin, E. 2010. Procedural generation of roads. In Eurographics 2010.Google ScholarGoogle Scholar
  11. Gerlough, D. L. 1955. Simulation of freeway traffic on a general-purpose discrete variable computer. PhD thesis, UCLA.Google ScholarGoogle Scholar
  12. Go, J., Vu, T., and Kuffner, J. 2005. Autonomous behaviors for interactive vehicle animations. In Intl. J. of Graphical Models. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Guy, S., Chhugani, J., Curtis, S., Dubey, P., Lin, M. C., and Manocha, D. 2010. PLEdestrians: A Least-Effort Approach to Crowd Simulation. In EG/ACM SCA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Helbing, D. 2001. Traffic and related self-driven many-particle systems. Reviews of Modern Physics 73, 4, 1067--1141.Google ScholarGoogle ScholarCross RefCross Ref
  15. Hirschfelder, J. O., Curtiss, C. F., and Bird, R. B. 1964. The Molecular Theory of Gases and Liquids, revised edition ed. Wiley-Interscience.Google ScholarGoogle Scholar
  16. Hochbaum, D. S., and Shmoys, D. B. 1987. Using dual approximation algorithms for scheduling problems: Theoretical and practical results. Journal of the ACM 34, 1 (January), 144--162. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Kim, K., Oh, S., Lee, J., and Essa, I. 2009. Augmenting aerial earth maps with dynamic information. In IEEE International Symposium on Mixed and Augmented Reality. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Lebacque, J., Mammar, S., and Haj-Salem, H. 2007. The Aw--Rascle and Zhangs model: Vacuum problems, existence and regularity of the solutions of the Riemann problem. Trans. Research Part B 41, 7, 710--721.Google ScholarGoogle ScholarCross RefCross Ref
  19. Lewis, P. A. W., and Shedler, G. S. 1979. Simulation of non-homogeneous poisson processes by thinning. Naval Research Logistics Quaterly 26, 403--413.Google ScholarGoogle ScholarCross RefCross Ref
  20. Lighthill, M. J., and Whitham, G. B. 1955. On kinematic waves. ii. a theory of traffic flow on long crowded roads. Proceedings of the Royal Society of London A229, 1178 (May), 317--345.Google ScholarGoogle Scholar
  21. 2011. MITSIM. MIT Intelligent Transportation Systems.Google ScholarGoogle Scholar
  22. Morse, M., and Patel, J. 2007. An efficient and accurate method for evaluating time series similarity. In ACM SIGMOD, ACM, 569--580. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Nagel, K., and Schreckenberg, M. 1992. A cellular automaton model for freeway traffic. Journal de Physique I 2, 12 (December), 2221--2229.Google ScholarGoogle Scholar
  24. Narain, R., Golas, A., Curtis, S., and Lin, M. C. 2009. Aggregate dynamics for dense crowd simulation. ACM SIGGRAPH Asia. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Newell, G. 1961. Nonlinear effects in the dynamics of car following. Operations Research 9, 2, 209--229.Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Pausch, R., Crea, T., and Conway, M. 1992. A literature survey for virtual environments - military flight simulator visual systems and simulator sickness. Presence: Teleoperators and Virtual Environments 1, 3, 344--363. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Payne, H. J. 1971. Models of freeway traffic and control. Mathematical Models of Public Systems 1, 51--60. Part of the Simulation Councils Proceeding Series.Google ScholarGoogle Scholar
  28. Pelechano, N., Allbeck, J. M., and Badler, N. I. 2008. Virtual Crowds: Methods, Simulation and Control. Morgan and Claypool Publishers. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Pettré, J., Kallmann, M., and Lin, M. C. 2008. Motion planning and autonomy for virtual humans. In ACM SIGGRAPH 2008 classes, 1--31. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Reggio, G., 1982. Koyaanisqatsi. Film, Oct. MGM Studios.Google ScholarGoogle Scholar
  31. Reynolds, C. 1987. Flocks, herds and schools: A distributed behavioral model. In SIGGRAPH, ACM New York, NY, USA, 25--34. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Richards, P. I. 1956. Shock waves on the highway. Operations Research 4, 1, 42--51.Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Sewall, J., Wilkie, D., Merrell, P., and Lin, M. C. 2010. Continuum traffic simulation. In Eurographics 2010.Google ScholarGoogle Scholar
  34. Sewall, J., van den Berg, J., Lin, M. C., and Manocha, D. 2011. Virtualized traffic: Reconstructing traffic flows from discrete spatiotemporal data. IEEE TVCG 17, 26--37. doi = http://doi.ieeecomputersociety.org/10.1109/TVCG.2010.27. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. 2009. SUMO --- Simulation of Urban MObility, October.Google ScholarGoogle Scholar
  36. Treiber, M., Hennecke, A., and Helbing, D. 2000. Congested traffic states in empirical observations and microscopic simulations. Physical Review E 62, 2, 1805--1824.Google ScholarGoogle ScholarCross RefCross Ref
  37. Treuille, A., Cooper, S., and Popović, Z. 2006. Continuum crowds. In SIGGRAPH, ACM New York, NY, USA, 1160--1168. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Wang, H., Kearney, J., Cremer, J., and Willemsen, P. 2005. Steering behaviors for autonomous vehicles in virtual environments. In Proc. IEEE Virtual Reality Conf., 155--162. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Whitham, G. B. 1974. Linear and nonlinear waves. John Wiley and Sons, New York, New York.Google ScholarGoogle Scholar
  40. Wilkie, D., Sewall, J., and Lin, M. C. 2011. Transforming gis data into functional road models for large-scale traffic simulation. IEEE TVCG. doi = http://doi.ieeecomputersociety.org/10.1109/TVCG.2011.116. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Zhang, H. 2002. A non-equilibrium traffic model devoid of gaslike behavior. Trans. Research Part B 36, 3, 275--290.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Interactive hybrid simulation of large-scale traffic

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in

          Full Access

          • Published in

            cover image ACM Transactions on Graphics
            ACM Transactions on Graphics  Volume 30, Issue 6
            December 2011
            678 pages
            ISSN:0730-0301
            EISSN:1557-7368
            DOI:10.1145/2070781
            Issue’s Table of Contents

            Copyright © 2011 ACM

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 12 December 2011
            Published in tog Volume 30, Issue 6

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • research-article

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader