skip to main content
10.1145/2079296.2079304acmconferencesArticle/Chapter ViewAbstractPublication PagesconextConference Proceedingsconference-collections
research-article

MicroTE: fine grained traffic engineering for data centers

Published:06 December 2011Publication History

ABSTRACT

The effects of data center traffic characteristics on data center traffic engineering is not well understood. In particular, it is unclear how existing traffic engineering techniques perform under various traffic patterns, namely how do the computed routes differ from the optimal routes. Our study reveals that existing traffic engineering techniques perform 15% to 20% worse than the optimal solution. We find that these techniques suffer mainly due to their inability to utilize global knowledge about flow characteristics and make coordinated decision for scheduling flows.

To this end, we have developed MicroTE, a system that adapts to traffic variations by leveraging the short term and partial predictability of the traffic matrix. We implement MicroTE within the OpenFlow framework and with minor modification to the end hosts. In our evaluations, we show that our system performs close to the optimal solution and imposes minimal overhead on the network making it appropriate for current and future data centers.

References

  1. M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable, commodity data center network architecture. SIGCOMM '08, New York, NY, USA, 2008. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat. Hedera: Dynamic flow scheduling for data center networks. In NSDI '10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Y. Azar, E. Cohen, A. Fiat, H. Kaplan, and H. Racke. Optimal oblivious routing in polynomial time. STOC '03. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. B. Fortz and M. Thorup. Internet Traffic Engineering by Optimizing OSPF Weights. In Infocom, 2000.Google ScholarGoogle ScholarCross RefCross Ref
  5. T. Benson, A. Akella, and D. Maltz. Network Traffic Characteristics of Data Centers in the Wild. In Proceedings of IMC, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. T. Benson, A. Anand, A. Akella, and M. Zhang. Understanding Data Center Traffic Characteristics. In Proceedings of Sigcomm Workshop: Research on Enterprise Networks, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. A. Elwalid, C. Jin, S. Low, and I. Widjaja. Mate: multipath adaptive traffic engineering. Comput. Netw., 40:695--709, December 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. N. Farrington, G. Porter, S. Radhakrishnan, H. H. Bazzaz, V. Subramanya, Y. Fainman, G. Papen, and A. Vahdat. Helios: a hybrid electrical/optical switch architecture for modular data centers. SIGCOMM '10, NY, USA, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri, D. A. Maltz, P. Patel, and S. Sengupta. V12: a scalable and flexible data center network. In SIGCOMM, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang, and S. Lu. Dcell: a scalable and fault-tolerant network structure for data centers. SIGCOMM '08. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. S. Kandula, D. Katabi, B. Davie, and A. Charny. Walking the tightrope: responsive yet stable traffic engineering. In SIGCOMM, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. S. Kandula, J. Padhye, and P. Bahl. Flyways to de-congest data center networks. In Proc. ACM Hotnets-VIII, New York City, NY. USA., Oct. 2009.Google ScholarGoogle Scholar
  13. S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken. The Nature of Data Center Traffic: Measurements and Analysis. In IMC, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. N. Mckeown, S. Shenker, T. Anderson, L. Peterson, J. Turner, H. Balakrishnan, and J. Rexford. Openflow: Enabling innovation in campus networks.Google ScholarGoogle Scholar
  15. A. Medina, N. Taft, K. Salamatian, S. Bhattacharyya, and C. Diot. Traffic matrix estimation: existing techniques and new directions. SIGCOMM '02. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. R. Niranjan Mysore, A. Pamboris, N. Farrington, N. Huang, P. Miri, S. Radhakrishnan, V. Subramanya, and A. Vahdat. Portland: a scalable fault-tolerant layer 2 data center network fabric. In SIGCOMM, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. A. Shieh, S. Kandula, A. Greenberg, C. Kim, and B. Saha. Sharing the data center network. NSDI'11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. A. Tavakoli, M. Casado, T. Koponen, and S. Shenker. Applying nox to the datacenter. In Proc. of (HotNets-VIII), 2009.Google ScholarGoogle Scholar
  19. G. Wang, D. G. Andersen, M. Kaminsky, M. Kozuch, T. S. E. Ng, K. Papagiannaki, and M. Ryan. c-Through: Part-time optics in data centers. In Proc. ACM SIGCOMM, New Delhi, India, Aug. 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. H. Wang, H. Xie, L. Qiu, Y. R. Yang, Y. Zhang, and A. Greenberg. Cope: traffic engineering in dynamic networks. SIGCOMM Comput. Commun. Rev., 36(4):99--110, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Y. Zhang, L. Breslau, V. Paxson, and S. Shenker. Traffic Engineering with Estimated Traffic Matrices. Miami, FL, Oct. 2003.Google ScholarGoogle Scholar

Index Terms

  1. MicroTE: fine grained traffic engineering for data centers

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      CoNEXT '11: Proceedings of the Seventh COnference on emerging Networking EXperiments and Technologies
      December 2011
      364 pages
      ISBN:9781450310413
      DOI:10.1145/2079296

      Copyright © 2011 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 6 December 2011

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      Overall Acceptance Rate198of789submissions,25%

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader