skip to main content
article
Free Access

A visual retrieval environment for hypermedia information systems

Authors Info & Claims
Published:11 January 1996Publication History
Skip Abstract Section

Abstract

We present a graph-based object model that may be used as a uniform framework for direct manipulation of multimedia information. After an introduction motivating the need for abstraction and structuring mechanisms in hypermedia systems, we introduce the data model and the notion of perspective, a form of data abstraction that acts as a user interface to the system, providing control over the visibility of the objects and their properties. A perspective is defined to include an intension and an extension. The intension is defined in terms of a pattern, a subgraph of the schema graph, and the extension is the set of pattern-matching instances. Perspectives, as well as database schema and instances, are graph structures that can be manipulated in various ways. The resulting uniform approach is well suited to a visual interface. A visual interface for complex information systems provides high semantic power, thus exploiting the semantic expressibility of the underlying data model, while maintaining ease of interaction with the system. In this way, we reach the goal of decreasing cognitive load on the user, with the additional advantage of always maintaining the same interaction style. We present a visual retrieval environment that effectively combines filtering, browsing, and navigation to provide an integrated view of the retrieval problem. Design and implementation issues are outlined for MORE (Multimedia Object Retrieval Environment), a prototype system relying on the proposed model. The focus is on the main user interface functionalities, and actual interaction sessions are presented including schema creation, information loading, and information retrieval.

References

  1. 4FRATI, F. mm KOUTRAS, D. 1990, A hypertext model supporting query mechanisms. In Hypertext: Concepts, Systems, and Applications, A. Rizk, N, Streitz, and J. Andr&, Eds. Cambridge University Press, Cambridge, Mass., 52-66, Google ScholarGoogle Scholar
  2. AMAXN, B. ANDSCHOI.L,M. 1992. Gram: A graph data model and query language. In Proceed-ings of the ACM Conference on Hypertext (Milan, Italy). ACM, New York, 201 -211. Google ScholarGoogle Scholar
  3. ANDRJES,M., GIIMIS,M., PAREDAENS,J., THYSSENSI., AfSDV,m DENBUSSCHE,J. 1992. Concepts for graph-oriented object manipulation, In Aduances in Database Technology, A. Pirotte, C, Delobel, and G, Gottlab, Eds. Lecture Notes in Computer Science, vol. 580. Spnnger-Verlag, Berlin, 21-38, Google ScholarGoogle Scholar
  4. Mw;~:{AvcR~, M., CATAR('I.T., AIVUS.WTUWI, G, 1990. QBD*: .4 graphical query language with recursion. IEEE Trans. Softw. Eng. 16, 10, 1150-1163, Google ScholarGoogle Scholar
  5. Aron}xo, A., AMI~L, E., ANOBH.W;AVA, B. 1991. Experiences with SUPER, a database visual environment. In Proceedings of the 2nd International Conference on Database and Expert Systems. Springer-Verlag, Berlin, 172-178.Google ScholarGoogle Scholar
  6. BAT{~{, C., CA~AR('1, T., COSTAIMLE,M. F., AND LEVIALDI,S, 1992. Visual query systems: A taxonomy. In Visual Database Systems 11, E, Knuth and L. M. Wagner, Eds. North-Holland, Amsterdam, 153-168. Google ScholarGoogle Scholar
  7. BwR}, C. 1990. A formal approach to object-oriented databases, IEEE Data Knowl, Eng. 5, 4, 353-382. Google ScholarGoogle Scholar
  8. BEER}, C, AhW KOR~A'IXKY, Y, 1990. A logical query language for hypertext systems. In Hypertext: Concepts, Sy.$tems, and Applications, A. Rizk, N. Streitz and J. Andre, Eds. Cambridge University Press, Cambridge, Mass,, 67-80. Google ScholarGoogle Scholar
  9. BELKIN, N. J, ANDCROFT, W. B, 1992. Information filtering and information retrieval: Two sides of the same coin? Commun, ACM 35, 12 (Dec.), 29-38. Google ScholarGoogle Scholar
  10. BFRTIM)) E., NWRI, M., PWWATTI, G., AND.'%ATTELLA,L. 1992. Object-oriented query lan-guages: The notion and the issues, IEEE Data Knowl. Eng, 4, 3, 223-237. Google ScholarGoogle Scholar
  11. BRYrK, D, ANDHL'LL, R. 1986. SNAP: A graphics-based schema manager. In Proceedings of the IEEE Conference on Data Engineering (Los Angeles, Calif.). IEEE, New York, 151-164. Google ScholarGoogle Scholar
  12. CmPRix,L, B. ANDGOOOMAN,J, 1988. HAM: A general purpose hypertext abstract machine. Commun. ACM 13, 7 (July), 856-861, Google ScholarGoogle Scholar
  13. CATARCT,T. 1992. On the expressive power of graphical query languages. In Visual Database Systems 11, E. Knuth and L. M. Wagner, Eds, North-Holland, Amsterdam, 411-421, Google ScholarGoogle Scholar
  14. CHRJSTOLXJJLAKIS, S., THEOnORJIXXl,M,, Ho, F., PAPA, M., ,om PATHRJA,A. 1986. Multimedia document presentation, information extraction, and document formation in MINOS. ACM Trans. Off. Inf. S.yst. 4, 4, 345-383. Google ScholarGoogle Scholar
  15. CoNswIM B. 1987. Hypertext: An introduction and survey. IEEE thnpu~. 20, 19, 17-41. Google ScholarGoogle Scholar
  16. Co~Sh:~s, M. P, .mn MENDELZON,A. 1993. Hy +: A hygraph-based query and visualization system. In Proceedings of the ACM SIGMOD Conference (Washington, D.C. ). ACM, New York, 511 516. Google ScholarGoogle Scholar
  17. CONSENS, M. P. AND MENDELZON,A. O. 1989. Expressing structural hypertext queries in GraphLog. In Proceedings ACM Conference on Hypertext (Pittsburgh,Pa.). ACM, New York, 269-292. Google ScholarGoogle Scholar
  18. CONSENS, M, P. AND MENDELZON,A. O. 1990. GraphLog:A visual formalism for real life recursion.In Prcweedings of the ACM Symposium on Principles of Database Systems (Nash-ville, Term,).ACM,NewYork, 404-416. Google ScholarGoogle Scholar
  19. CROm, W. B. ANDTURTLE, H. 1989. A retrieval model for incorporating hypertext links. In Proceedings of the ACM Conference on Hypertext (Pittsburgh,Pa.).ACM,NewYork, 213-224. Google ScholarGoogle Scholar
  20. CZEJDO,B., EMBLEY,D., ELMASRI,R., ANDRUSINKIEWICZ,M. 1990. Agraphical datamanipula-tionlanguage foranextended entity-relationshipmodel. IEEE Comput. 23,3,26-36. Google ScholarGoogle Scholar
  21. DAVISON, J. W. AND ZDONIK, S. B. 1986. A visual interface for a database with version management. ACM Trans. Off. Inf. Syst. 4,3,226-256. Google ScholarGoogle Scholar
  22. DELBIMBO,A. ANDLUCARELLA,D. 1991. Afuzzyobject retrieval system forimage understand-ing. In Proceedings of the IEEE Conference on Computers and Communications (Scottsdale, Ariz.).IEEE,NewYork, 835-841.Google ScholarGoogle Scholar
  23. EPSTEIN,R. P. 1990. Graphical query languages for object oriented data models. In Proceed-ings of the ZEEE Workshop on Visual Languages (Skokie, 111.),IEEE, New York, 36-41.Google ScholarGoogle Scholar
  24. FREI, H. P. ANDSTIEGER,D. 1992, Making use of hypertext links when retrieving information. In Proceedings of the ACM Conference on Hypertext (Milan, Italy). ACM, New York, 102-111. Google ScholarGoogle Scholar
  25. FURUTA,R. AND STO'TTS,P. D. 1990. A functional meta-structure for hypertext models and systems. Electron. Publ. 3, 4, 179-205. Google ScholarGoogle Scholar
  26. GARG,P. K. 1988. Abstraction mechanisms in hypertext. Commun. ACM 31,7 (July), 862-879. Google ScholarGoogle Scholar
  27. GARZOTTO,F., PAOLINLP., ANDSCHWABE,D. 1993. HDM:A model-based approach to hyper-text application design. ACM Trans. Znf. Syst. 11, 1, 1-26. Google ScholarGoogle Scholar
  28. GOLDMAN,K. J., KANNELLAKIS,P. C., GOLDMAN,S. A., ANDZDONtK,S. B. 1985. ISIS: Interface for a semanticinformationsystem.In Proceedings of ACM SIGMOD (Austin, Tex.). ACM, New York, 328-342, Google ScholarGoogle Scholar
  29. GUARDALBEN,G. ANDLUCARELLA,D. 1993. Information retrieval using fuzzy reasoning. IEEE Data Knowl. Eng. 10, L 29-44. Google ScholarGoogle Scholar
  30. GUO, M. S., SU, S. Y. W., AND LAM, H. 1991. AD association algebra for processing object oriented databases. In Proceedings of the IEEE Conference on Data Engimering (Kobe, Japan). IEEE, New York, 23-33. Google ScholarGoogle Scholar
  31. GYSSENS, M., PAREDAENS,J,, AND VAN GUCHT, D. 1990. A graph-oriented object database model. In Proceedings of the ACM Symposium on Principles of Database Systems (Nashville, Term.). ACM, New York, 417-424. Google ScholarGoogle Scholar
  32. HALASZ,F. G. 1988, Reflections on Notecards: Seven issues for the next generation of hyper-media systems. Commun. ACM 31, 7 (July), 836-852. Google ScholarGoogle Scholar
  33. HALASZ,F. G. ANDSCHWARTZ,M. 1994. The Dexter hypertext reference model. Commun.ACM 37, 2 (Feb.), 30-39. Google ScholarGoogle Scholar
  34. HIRATA, K., HARA, Y., SHIBATA, N., AND HIRABAYASHI,F. 1993. Media-based navigation for hypermedia systems. In Proceedings of the ACM Conference on Hypertext (Seattle, Wash.). ACM, New York, 159-173. Google ScholarGoogle Scholar
  35. HULL, R. ANDKING, R. 1987. Semantic database modeling Survey, applications, and research issues. ACM Comput. Surv. 19, 3, 201-260. Google ScholarGoogle Scholar
  36. KING, R. ANDNOVAK, M. 1993. Designing database interfaces with DBface. ACM Trans. Inf. Syst. 11, 2, 105-132. Google ScholarGoogle Scholar
  37. KUNTZ,M. ANDMELCHERT,R, 1989. Pasta-3's graphical query language: Direct manipulation, cooperative queries, full expressive power. In Proceedings of the 5th International Conference on Very .krge Databases (Amsterdam, The Netherlands). VLDB Endowment, Saratoga, Calif., 97-105. Google ScholarGoogle Scholar
  38. LANGE,D. 1990. A formal model for hypertext. In Proceedings of the Hypertext Standardiza-tion Workshop (Gaithersburg, Md.). NIST, Washington, D.C., 145-166.Google ScholarGoogle Scholar
  39. LIEBERHERR,K. AND XMO, C. 1993. Formal foundations for object-oriented data modeling. IEEE Trans. Knowl. Data Eng. 5, 3, 462-478. Google ScholarGoogle Scholar
  40. LUCARELLA,D. 1988, A document retrieval system based on nearest neighbour searching. J. Inf. Sci. 14, 1, 25-33. Google ScholarGoogle Scholar
  41. L(WAWWLA. D, 1990. A model for hypertext-based information retrieval. In Hypertext: Con-cepts, S,vsfems, and Applications, A, Rizk, N, Streitz, and J. Andr+, Eds. Cambridge University Press. ~ambridge, Mass., 81-94, Google ScholarGoogle Scholar
  42. L{(AKELLA, D. ANDZAWZ{,A. 1993. Information retrieval from hypertext: An approach using plausible inference. Inf. %ocess. Manage, 29, 3, 299-312 Google ScholarGoogle Scholar
  43. I,t'('~IwI.I.~, D., PARISOITO.S,, AND ZANZI,A. 1993. MORE: Multimedia Object Retrieval Envi-ronment. In Proceedings of ~he ACM Conference on Hypertext (Seattle, Wash.). ACM, New York, 39-50. Google ScholarGoogle Scholar
  44. L(I(-AtW{.i.A, D. Z~NzI, A., AW) ZAW, M. 1994. A visual environment for multimedia object retrieval. In Proceedings of the ACM SIGCHI Conference on Adcanced Vi.suol Interfaces (Bari, Italy) ACM, New York, 210-212, Google ScholarGoogle Scholar
  45. NIELSEN,,J. 1990. Hypertext and Hypermedia. Academic Press, San Diego, Calif, Google ScholarGoogle Scholar
  46. PArl.M'F;. F. N. 1993. The Design of an Extendible Graph Editor. Lectures Notes in Computer Science. Vol. 704. Springer-Verlag, Berlin. Google ScholarGoogle Scholar
  47. SALTON,G. 1989. Automatic Text Processing. Addison-Wesley, Reading, .Mass. Google ScholarGoogle Scholar
  48. SCHN.ASE, tJ. L. LIWGETT, J. J., HICKS, D. L., A~USZAIR), R. L. 1993a. Semantic data modeling of hypermedia associations. ACM Trans. Inf. Syst. z 1, 1,27-50. Google ScholarGoogle Scholar
  49. SCH~ASE, J. L. LEGGEIT, J. J., HICKS, D. L., NI-XRNBERG,P. J., AND SANcH~z, J. A. 1993b. Design and implementation of the HB1 hyperbase management system. Electron. Puhl. 6, 1, 35-63.Google ScholarGoogle Scholar
  50. SCHCTTT, H. A. ANI)STREITL,N. 1990. Hyperbase: A hypermedia engine based on a relational database management system. Jn Hypertext: Concepts, Systems, and Applications, A. Rizk, N. Streitz, and J. Andre, Eds. Cambridge University Press, Cambridge, Mass., 95-108. Google ScholarGoogle Scholar
  51. SHAW, G. M. AND ZIXNIK, S. B. 1990, A query algebra for object-oriented databases. In Proceedings af the 6th International Conference on Data Engineering (Las Angeles, Calif.). IEEE, New York, 154-162. Google ScholarGoogle Scholar
  52. STRALW, D. D. AND Ozst, M. T, 1990. Queries and query processing in object-oriented database systems, ACM Trans. Inf. Syst. 8, 4, 387-430. Google ScholarGoogle Scholar
  53. TOMPA. F. W. 1989, A data model for flexible hypertext database systems. ACM Trans. Inf. Syst. 7, 1, 85 100. Google ScholarGoogle Scholar
  54. WIII,, U. K. AXI) LEXX:ETT,J. J. 1992. Hyperform: Using extensibility to develop dynamic, open and distributed hypertext systems. In Proceedings of the ACM Conference on Hypertext (Milan, Jtaly). AC.M, New York, 251-261. Google ScholarGoogle Scholar
  55. Wo!w, H. K. T. .ANOK((), J. 1982, GUIDE: Graphical User Interface for Database Exploration. In Proceedings of the 8th International Conference on Very Large Databases (Mexico City, Mexico). VLDB Endowment, Saratoga, Calif., 22-32. Google ScholarGoogle Scholar

Index Terms

  1. A visual retrieval environment for hypermedia information systems

              Recommendations

              Reviews

              Lynda Hardman

              The authors present a graph-based object model of a database that can be directly manipulated for specifying and retrieving information from the database. In other words, a user can explore, manipulate, and select parts of the conceptual schema graph. Parts of this graph selected through the use of perspectives can be combined with other parts to form a more complex query. The result of this query is the selection of a number of multimedia objects satisfying the query. Specifically, the paper describes both the underlying theory and the design and implementation of the Multimedia Object Retrieval Environment (MORE) system, illustrating the approach. The paper is robust and well founded, including references to work in the semantic database and hypertext fields. It presents a useful way of interacting with large databases of information.

              Access critical reviews of Computing literature here

              Become a reviewer for Computing Reviews.

              Comments

              Login options

              Check if you have access through your login credentials or your institution to get full access on this article.

              Sign in

              Full Access

              PDF Format

              View or Download as a PDF file.

              PDF

              eReader

              View online with eReader.

              eReader