skip to main content
research-article

Bilinear spatiotemporal basis models

Authors Info & Claims
Published:30 April 2012Publication History
Skip Abstract Section

Abstract

A variety of dynamic objects, such as faces, bodies, and cloth, are represented in computer graphics as a collection of moving spatial landmarks. Spatiotemporal data is inherent in a number of graphics applications including animation, simulation, and object and camera tracking. The principal modes of variation in the spatial geometry of objects are typically modeled using dimensionality reduction techniques, while concurrently, trajectory representations like splines and autoregressive models are widely used to exploit the temporal regularity of deformation. In this article, we present the bilinear spatiotemporal basis as a model that simultaneously exploits spatial and temporal regularity while maintaining the ability to generalize well to new sequences. This factorization allows the use of analytical, predefined functions to represent temporal variation (e.g., B-Splines or the Discrete Cosine Transform) resulting in efficient model representation and estimation. The model can be interpreted as representing the data as a linear combination of spatiotemporal sequences consisting of shape modes oscillating over time at key frequencies. We apply the bilinear model to natural spatiotemporal phenomena, including face, body, and cloth motion data, and compare it in terms of compaction, generalization ability, predictive precision, and efficiency to existing models. We demonstrate the application of the model to a number of graphics tasks including labeling, gap-filling, denoising, and motion touch-up.

Skip Supplemental Material Section

Supplemental Material

References

  1. Akhter, I., Sheikh, Y., Khan, S., and Kanade, T. 2008. Nonrigid structure from motion in trajectory space. In Advances in Neural Information Processing Systems.Google ScholarGoogle Scholar
  2. Akhter, I., Sheikh, Y., Khan, S., and Kanade, T. 2010. Trajectory space: A dual representation for nonrigid structure from motion. IEEE Trans. Pattern Anal. Mach. Intell. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Anguelov, D., Srinivasan, P., Koller, D., Thrun, S., Rodgers, J., and Davis, J. 2005. SCAPE: Shape completion and animation of people. ACM Trans. Graph. 24, 3, 408--416. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Arikan, O. 2006. Compression of motion capture databases. ACM Trans. Graph. 25, 3, 890--897. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Bregler, C., Hertzmann, A., and Biermann, H. 2000. Recovering non-rigid 3D shape from image streams. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 690--696.Google ScholarGoogle Scholar
  6. Bronstein, A., Bronstein, M., and Kimmel, R. 2008. Numerical Geometry of Non-Rigid Shapes. Springer. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Chai, J. and Hodgins, J. K. 2005. Performance animation from low-dimensional control signals. ACM Trans. Graph. 24, 3, 686--696. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Chuang, E. and Bregler, C. 2005. Mood swings: Expressive speech animation. ACM Trans. Graph. 24, 2, 331--347. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Cootes, T. F., Taylor, C. J., Cooper, D. H., and Graham, J. 1995. Active shape models—Their training and application. Comput. Vis. Image Understand. 61, 1, 38--59. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. de Aguiar, E., Sigal, L., Treuille, A., and Hodgins, J. K. 2010. Stable spaces for real-time clothing. ACM Trans. Graph. 29, 4, 106:1--106:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. de Aguiar, E., Stoll, C., Theobalt, C., Ahmed, N., Seidel, H.-P., and Thrun, S. 2008. Performance capture from sparse multi-view video. ACM Trans. Graph. 27, 98:1--98:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. DeAngelis, G. C., Ohzawa, I., and Freeman, R. D. 1995. Receptive-field dynamics in the central visual pathways. Trends Neurosci. 18, 10, 451--458.Google ScholarGoogle ScholarCross RefCross Ref
  13. Deboor, C. 1978. A Practical Guide to Splines. Springer.Google ScholarGoogle Scholar
  14. Dryden, I. L. and Mardia, K. V. 1998. Statistical Shape Analysis. Wiley.Google ScholarGoogle Scholar
  15. Gabaix, X. and Laibson, D. 2008. The seven properties of good models. In The Foundations of Positive and Normative Economics: A Handbook, A. Caplin and A. Schotter, Eds., Oxford University Press.Google ScholarGoogle Scholar
  16. Gleicher, M. 1997. Motion editing with spacetime constraints. In Proceedings of the Symposium on Interactive 3D Graphics. 139--148. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Gleicher, M. 1998. Retargetting motion to new characters. In Proceedings of SIGGRAPH. Annual Conference Series. 33--42. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Gleicher, M. 2001. Comparing constraint-based motion editing methods. Graph. Models 63, 2. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Gleicher, M. and Litwinowicz, P. 1998. Constraint-Based motion adaptation. J. Vis. Comput. Anim., 65--94.Google ScholarGoogle ScholarCross RefCross Ref
  20. Gotardo, P. F. and Martinez, A. M. 2011. Computing smooth time trajectories for camera and deformable shape in structure from motion with occlusion. IEEE Trans. Pattern Anal. Mach. Intell. 33, 2051--2065. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Hamarneh, G. and Gustavsson, T. 2004. Deformable spatio-temporal shape models: Extending active shape models to 2D+time. Image Vis. Comput. 22, 6, 461--470.Google ScholarGoogle ScholarCross RefCross Ref
  22. Herda, L., Fua, P., Plankers, R., Boulic, R., and Thalmann, D. 2001. Using skeleton-based tracking to increase the reliability of optical motion capture. Hum. Move. Sci. 20, 3, 313--341.Google ScholarGoogle ScholarCross RefCross Ref
  23. Hoogendoorn, C., Sukno, F., Orděs, S., and Frangi, A. 2009. BiLinear models for spatio-temporal point distribution analysis. Int. J. Comput. Vis. 85, 237--252. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Hornung, A., Sar-Dessai, S., and Kobbelt, L. 2005. Self-calibrating optical motion tracking for articulated bodies. In Proceedings of Virtual Reality Conference (VR). IEEE, 75--82. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Jain, A. 1989. Fundamentals of Digital Image Processing. Prentice-Hall, Upper Saddle River, NJ. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Lawrence, N. D. 2004. Gaussian process latent variable models for visualisation of high dimensional data. In Advances in Neural Information Processing Systems.Google ScholarGoogle Scholar
  27. Le, H. and Kendall, D. G. 1993. The riemannian structure of euclidean shape spaces: A novel environment for statistics. Ann. Statist 21, 3, 1225--1271.Google ScholarGoogle ScholarCross RefCross Ref
  28. Lewis, J. P. and Anjyo, K.-i. 2010. Direct manipulation blendshapes. IEEE Comput. Graph. Appl. 30, 4, 42--50. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Li, H., Weise, T., and Pauly, M. 2010a. Example-Based facial rigging. ACM Trans. Graph. 29, 4, 32:1--32:6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Li, L., McCann, J., Faloutsos, C., and Pollard, N. 2010b. Bolero: A principled technique for including bone length constraints in motion capture occlusion filling. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Li, L., McCann, J., Pollard, N. S., and Faloutsos, C. 2009. Dynammo: Mining and summarization of coevolving sequences with missing values. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 507--516. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Liu, G. and McMillan, L. 2006. Estimation of missing markers in human motion capture. Vis. Comput. 22, 721--728. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Lou, H. and Chai, J. 2010. Example-based human motion denoising. IEEE Trans. Vis. Comput. Graph. 16, 870--879. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Magnus, J. R. and Neudecker, H. 1999. Matrix Differential Calculus with Applications in Statistics and Econometrics, 2nd Ed. John Wiley & Sons.Google ScholarGoogle Scholar
  35. Mardia, K. V. and Dryden, I. L. 1989. Shape distributions for landmark data. Adv. Appl. Probab. 21, 4, 742--755.Google ScholarGoogle ScholarCross RefCross Ref
  36. Min, J., Chen, Y.-L., and Chai, J. 2009. Interactive generation of human animation with deformable motion models. ACM Trans. Graph. 29, 1, 9:1--9:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Min, J., Liu, H., and Chai, J. 2010. Synthesis and editing of personalized stylistic human motion. In Proceedings of the ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games. 39--46. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Mitchell, S., Bosch, J., Lelieveldt, B., van der Geest, R., Reiber, J., and Sonka, M. 2002. 3-D active appearance models: Segmentation of cardiac MR and ultrasound images. IEEE Trans. Med. Imaging 21, 9, 1167--1178.Google ScholarGoogle ScholarCross RefCross Ref
  39. Park, S. I. and Hodgins, J. K. 2006. Capturing and animating skin deformation in human motion. ACM Trans. Graph. 25, 3, 881--889. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Perperidis, D., Mohiaddin, R., and Rueckert, D. 2004. Spatio-Temporal free-form registration of cardiac MR image sequences. In Medical Image Computing and Computer-Assisted Intervention, C. Barillot, D. R. Haynor, and P. Hellier, Eds. Lecture Notes in Computer Science, vol. 3216. Springer, 911--919. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Rao, K. and Yip, P. 1990. Discrete Cosine Transform: Algorithms, Advantages, Applications. Academic, New York. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Safonova, A., Hodgins, J. K., and Pollard, N. S. 2004. Synthesizing physically realistic human motion in low-dimensional, behavior-specific spaces. ACM Trans. Graph. 23, 3, 514--521. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Schölkopf, B., Smola, A. J., and Müller, K.-R. 1997. Kernel principal component analysis. In Proceedings of the International Conference on Artificial Neural Networks. 583--588. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Sidenbladh, H., Black, M. J., and Fleet, D. J. 2000. Stochastic tracking of 3D human figures using 2D image motion. In Proceedings of the European Conference on Computer Vision. 702--718. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Sigal, L., Fleet, D., Troje, N., and Livne, M. 2010. Human attributes from 3D pose tracking. In Proceedings of the European Conference on Computer Vision. 243--257. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Sunkavalli, K., Matusik, W., Pfister, H., and Rusinkiewicz, S. 2007. Factored time-lapse video. ACM Trans. Graph. 26, 3, 101:1--101:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Tenenbaum, J. B. and Freeman, W. T. 2000. Separating style and content with bilinear models. Neural Comput. 12, 1247--1283. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Thrun, S., Burgard, W., and Fox, D. 2006. Probabilistic Robotics. Cambridge University Press.Google ScholarGoogle Scholar
  49. Torresani, L. and Bregler, C. 2002. Space-Time tracking. In Proceedings of the European Conference on Computer Vision. 801--812. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Troje, N. F. 2002. Decomposing biological motion: A framework for analysis and synthesis of human gait patterns. J. Vis. 2, 5 (9), 371--387.Google ScholarGoogle ScholarCross RefCross Ref
  51. Urtasun, R., Glardon, P., Boulic, R., Thalmann, D., and Fua, P. 2004. Style-Based motion synthesis. Comput. Graph. Forum 23, 4, 799--812.Google ScholarGoogle ScholarCross RefCross Ref
  52. Vasilescu, M. A. O. and Terzopoulos, D. 2004. TensorTextures: Multilinear image-based rendering. ACM Trans. Graph. 23, 3, 336--342. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. Vlasic, D., Brand, M., Pfister, H., and Popović, J. 2005. Face transfer with multilinear models. ACM Trans. Graph. 24, 3, 426--433. Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Wand, M., Jenke, P., Huang, Q., Bokeloh, M., Guibas, L., and Schilling, A. 2007. Reconstruction of deforming geometry from time-varying point clouds. In Proceedings of the 5th Eurographics Symposium on Geometry Processing. 49--58. Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. Wang, H., Wu, Q., Shi, L., Yu, Y., and Ahuja, N. 2005. Out-of-core tensor approximation of multi-dimensional matrices of visual data. ACM Trans. Graph. 24, 3, 527--535. Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. Wang, J., Fleet, D., and Aaron, H. 2008. Gaussian process dynamical models for human motion. IEEE Trans. Pattern Anal. Mach. Intell. 30, 283--298. Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. White, R., Crane, K., and Forsyth, D. 2007. Capturing and animating occluded cloth. ACM Trans. Graph. 26. Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. Witkin, A. and Kass, M. 1988. Spacetime constraints. In Proceedings of SIGGRAPH. 159--168. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Bilinear spatiotemporal basis models

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Graphics
          ACM Transactions on Graphics  Volume 31, Issue 2
          April 2012
          78 pages
          ISSN:0730-0301
          EISSN:1557-7368
          DOI:10.1145/2159516
          Issue’s Table of Contents

          Copyright © 2012 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 30 April 2012
          • Accepted: 1 November 2011
          • Revised: 1 October 2011
          • Received: 1 June 2011
          Published in tog Volume 31, Issue 2

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article
          • Research
          • Refereed

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader