skip to main content
research-article

Precomputed acceleration noise for improved rigid-body sound

Published:01 July 2012Publication History
Skip Abstract Section

Abstract

We introduce an efficient method for synthesizing acceleration noise -- sound produced when an object experiences abrupt rigid-body acceleration due to collisions or other contact events. We approach this in two main steps. First, we estimate continuous contact force profiles from rigid-body impulses using a simple model based on Hertz contact theory. Next, we compute solutions to the acoustic wave equation due to short acceleration pulses in each rigid-body degree of freedom. We introduce an efficient representation for these solutions -- Precomputed Acceleration Noise -- which allows us to accurately estimate sound due to arbitrary rigid-body accelerations. We find that the addition of acceleration noise significantly complements the standard modal sound algorithm, especially for small objects.

Skip Supplemental Material Section

Supplemental Material

tp206_12.mp4

mp4

17.7 MB

References

  1. Bonneel, N., Drettakis, G., Tsingos, N., Viaud-Delmon, I., and James, D. 2008. Fast Modal Sounds with Scalable Frequency-Domain Synthesis. ACM Transactions on Graphics 27, 3 (Aug.), 24:1--24:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Chadwick, J. N., An, S. S., and James, D. L. 2009. Harmonic Shells: A Practical Nonlinear Sound Model for Near-Rigid Thin Shells. ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia 2009) 28, 3 (Dec.). Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Chaigne, A., and Lambourg, C. 2001. Time-domain simulation of damped impacted plates. i. theory and experiments. Journal of the Acoustical Society of America 109, 4, 1422--1432.Google ScholarGoogle ScholarCross RefCross Ref
  4. Endo, M., Nishi, S., Nakagawa, M., and Sakata, M. 1981. Sound radiation from a circular cylinder subjected to elastic collision by a sphere. Journal of Sound and Vibration 75, 2, 285--302.Google ScholarGoogle ScholarCross RefCross Ref
  5. Flores, P., Ambrósio, J., Claro, J. C. P., and Lakarani, H. M. 2006. Influence of the contact-impact force model on the dynamic response of multi-body systems. In Proceedings of the Institution of Mechanical Engineers. Part K: Journal of Multi-Body Dynamics, vol. 220, 21--34.Google ScholarGoogle ScholarCross RefCross Ref
  6. Flores, P., Ambrosio, J. A. C., Claro, J. C. P., and Lankarani, H. M. 2008. Springer, ch. 3: Contact-Impact Force Models for Mechanical Systems.Google ScholarGoogle Scholar
  7. Flores, P., Machado, M., and Silva, M. T. 2011. On the continuous contact force models for soft materials in multibody dynamics. Multibody System Dynamics 25, 3, 357--375.Google ScholarGoogle ScholarCross RefCross Ref
  8. Gilardi, G., and Sharf, I. 2002. Literature survey of contact dynamics modelling. Mechanism and Machine Theory 37, 10, 1213--1239.Google ScholarGoogle ScholarCross RefCross Ref
  9. Guendelman, E., Bridson, R., and Fedkiw, R. 2003. Non-convex rigid bodies with stacking. ACM Transactions on Graphics (Proceedings of SIGGRAPH 2003) 22, 3 (Aug.). Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Hertz, H. 1882. Über die Berührung fester elastiche Körper and über die harte (On the contact of elastic solids). J. reine und angewandte Mathematk 92, 156--171.Google ScholarGoogle Scholar
  11. Hippmann, G. 2004. An algorithm for compliant contact between complexly shaped bodies. Multibody System Dynamics 12, 4, 345--362.Google ScholarGoogle ScholarCross RefCross Ref
  12. Hughes, T. J. R. 2000. The Finite Element Method: Linear Static and Dynamic Finite Element Analysis, second ed. Dover Publications, Inc., Mineola, New York.Google ScholarGoogle Scholar
  13. Hunt, K. H., and Crossley, F. R. E. 1975. Coefficient of restitution interpreted as damping in vibroimpact. Journal of Applied Mechanics 42, 2, 440--445.Google ScholarGoogle ScholarCross RefCross Ref
  14. James, D. L., Barbič, J., and Pai, D. K. 2006. Precomputed Acoustic Transfer: Output-sensitive, accurate sound generation for geometrically complex vibration sources. ACM Transactions on Graphics 25, 3 (July), 987--995. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Johnson, K. L. 1985. Contact Mechanics. Cambridge University Press.Google ScholarGoogle Scholar
  16. Koss, L. L., and Alfredson, R. J. 1973. Transient sound radiated by spheres undergoing and elastic collision. Journal of Sound and Vibration 27, 1, 59--75.Google ScholarGoogle ScholarCross RefCross Ref
  17. Lambourg, C., Chaigne, A., and Matignon, D. 2001. Time-domain simulation of damped impacted plates. ii. numerical model and results. Journal of the Acoustical Society of America 109, 4, 1433--1447.Google ScholarGoogle ScholarCross RefCross Ref
  18. Lankarani, H. M., and Nikravesh, P. E. 1990. A contact force model with hysteresis damping for impact analysis of multibody systems. Journal of Mechanical Design 112, 369--376.Google ScholarGoogle ScholarCross RefCross Ref
  19. Liu, Q.-H., and Tao, K. 1997. The perfectly matched layer for acoustic waves in absorptive media. Journal of the Acoustical Society of America 102, 4, 2072--2082.Google ScholarGoogle ScholarCross RefCross Ref
  20. Liu, Y. J. 2009. Fast Multipole Boundary Element Method: Theory and Applications in Engineering. Cambridge University Press, Cambridge.Google ScholarGoogle Scholar
  21. Lloyd, B., Raghuvanshi, N., and Govindaraju, N. K. 2011. Sound synthesis for impact sounds in video games. In Proceedings of I3D 2011 Symposium on Interactive 3D Graphics and Games. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Mehraby, K., Khademhosseini, H., and Poursina, M. 2011. Impact Noise Radiated by Collision of Two Spheres: Comparison Between Numerical Simulations, Experiments and Analytical Results. Journal of Mechanical Science and Technology 25, 7, 1675--1685.Google ScholarGoogle ScholarCross RefCross Ref
  23. Meyer, M., Desbrun, M., Schröder, P., and Barr, A. H. 2002. Discrete differential-geometry operators for triangulated 2-manifolds. VisMath.Google ScholarGoogle Scholar
  24. Mitchell, D. P., and Netravali, A. N. 1988. Reconstruction filters in computer-graphics. In Proceedings of SIGGRAPH 1988, 221--228. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. O'Brien, J. F., Cook, P. R., and Essl, G. 2001. Synthesizing sounds from physically based motion. In Proceedings of ACM SIGGRAPH 2001, Computer Graphics Proceedings, Annual Conference Series, 529--536. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. O'Brien, J. F., Shen, C., and Gatchalian, C. M. 2002. Synthesizing sounds from rigid-body simulations. In ACM SIGGRAPH Symposium on Computer Animation, 175--181. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Papetti, S., Avanzini, F., and Rocchesso, D. 2011. Numerical methods for a nonlinear impact model: A comparative study with closed-form corrections. IEEE Transactions on Audio, Speech and Language Processing 19, 7, 2146--2158. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Ren, Z., Yeh, H., and Lin, M. 2010. Synthesizing contact sounds between textured models. In Virtual Reality Conference (VR), 2010 IEEE, 139--146. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Richards, E. J., Wescott, M. E., and Jayapalan, R. K. 1979. On the prediction of impact noise, i: Acceleration noise. Journal of Sound and Vibration 62, 4, 547--575.Google ScholarGoogle ScholarCross RefCross Ref
  30. Richards, E. J., Wescott, M. E., and Jayapalan, R. K. 1979. On the prediction of impact noise, ii: Ringing noise. Journal of Sound and Vibration 65, 3, 419--451.Google ScholarGoogle ScholarCross RefCross Ref
  31. Ross, A., and Ostiguy, G. 2007. Propagation of the initial transient noise from an impacted plate. Journal of Sound and Vibration 301, 1, 28--42.Google ScholarGoogle ScholarCross RefCross Ref
  32. Schedin, S., Lambourge, C., and Chaigne, A. 1999. Transient sound fields from impacted plates: Comparison between numerical simulations and experiments. Journal of Sound and Vibration 221, 3, 471--490.Google ScholarGoogle ScholarCross RefCross Ref
  33. Schiehlen, W., and Seifried, R. 2004. Three approaches for elastodynamic contact in multibody systems. Multibody System Dynamics 12, 1, 1--16.Google ScholarGoogle ScholarCross RefCross Ref
  34. Serra, X., and Smith, J. 1990. Spectral modeling synthesis: A sound analysis/synthesis system based on a deterministic plus stochastic decomposition. Computer Music Journal 14, 4, 12--24.Google ScholarGoogle ScholarCross RefCross Ref
  35. Shen, L., and Liu, Y. J. 2007. An adaptive fast multipole boundary element method for three-dimensional acoustic wave problems based on the Burton-Miller formulation. Computational Mechanics 40, 3, 461--472.Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Stoelinga, C. N. J., and Lutfi, R. A. 2011. Modeling manner of contact in the synthesis of impact sounds for perceptual research. Journal of the Acoustical Society of America 130, 2, EL62--EL68.Google ScholarGoogle ScholarCross RefCross Ref
  37. van den Doel, K., Kry, P. G., and Pai, D. K. 2001. FoleyAutomatic: Physically Based Sound Effects for Interactive Simulation and Animation. In Proceedings of ACM SIGGRAPH 2001, Computer Graphics Proceedings, Annual Conference Series, 537--544. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Verma, T. S., and Meng, T. H. Y. 2000. Extending spectral modeling synthesis with transient modeling synthesis. Computer Music Journal 24, 2, 47--59. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Wåhlin, A. O., Gren, P. O., and Molin, N.-E. 1994. On structure borne sound: Experiments showing the initial transient acoustic wave field generated by an impacted plate. Journal of the Acoustical Society of America 96, 5, 2791--2797.Google ScholarGoogle ScholarCross RefCross Ref
  40. Yufang, W., and Zhongfang, T. 1992. Sound Radiated from the Impact of Two Cylinders. Journal of Sound and Vibration 159, 2, 295--303.Google ScholarGoogle ScholarCross RefCross Ref
  41. Zheng, C., and James, D. L. 2010. Rigid-body fracture sound with precomputed soundbanks. ACM Transactions on Graphics (Proceedings of SIGGRAPH 2010) 29, 3 (July). Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Zheng, C., and James, D. L. 2011. Toward high-quality modal contact sound. ACM Transactions on Graphics (Proceedings of SIGGRAPH 2011) 30, 4 (Aug.). Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Precomputed acceleration noise for improved rigid-body sound

              Recommendations

              Comments

              Login options

              Check if you have access through your login credentials or your institution to get full access on this article.

              Sign in

              Full Access

              • Published in

                cover image ACM Transactions on Graphics
                ACM Transactions on Graphics  Volume 31, Issue 4
                July 2012
                935 pages
                ISSN:0730-0301
                EISSN:1557-7368
                DOI:10.1145/2185520
                Issue’s Table of Contents

                Copyright © 2012 ACM

                Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

                Publisher

                Association for Computing Machinery

                New York, NY, United States

                Publication History

                • Published: 1 July 2012
                Published in tog Volume 31, Issue 4

                Permissions

                Request permissions about this article.

                Request Permissions

                Check for updates

                Qualifiers

                • research-article

              PDF Format

              View or Download as a PDF file.

              PDF

              eReader

              View online with eReader.

              eReader