skip to main content
10.1145/2213977.2214029acmconferencesArticle/Chapter ViewAbstractPublication PagesstocConference Proceedingsconference-collections
research-article

Nearly optimal sparse fourier transform

Published:19 May 2012Publication History

ABSTRACT

We consider the problem of computing the k-sparse approximation to the discrete Fourier transform of an n-dimensional signal. We show: An O(k log n)-time randomized algorithm for the case where the input signal has at most k non-zero Fourier coefficients, and An O(k log n log(n/k))-time randomized algorithm for general input signals.

Both algorithms achieve o(n log n) time, and thus improve over the Fast Fourier Transform, for any k=o(n). They are the first known algorithms that satisfy this property. Also, if one assumes that the Fast Fourier Transform is optimal, the algorithm for the exactly k-sparse case is optimal for any k = nΩ(1).

We complement our algorithmic results by showing that any algorithm for computing the sparse Fourier transform of a general signal must use at least Ω(k log (n/k) / log log n) signal samples, even if it is allowed to perform adaptive sampling.

Skip Supplemental Material Section

Supplemental Material

stoc_7a_2.mp4

mp4

138.8 MB

References

  1. R. Agrawal, C. Faloutsos, and A. Swami. Efficient similarity search in sequence databases. Int. Conf. on Foundations of Data Organization and Algorithms, pages 69--84, 1993. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. A. Akavia, S. Goldwasser, and S. Safra. Proving hard-core predicates using list decoding. Annual Symposium on Foundations of Computer Science, 44:146--159, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. A. Akavia. Deterministic sparse Fourier approximation via fooling arithmetic progressions. COLT, pages 381--393, 2010.Google ScholarGoogle Scholar
  4. A. Chandrakasan, V. Gutnik, and T. Xanthopoulos. Data driven signal processing: An approach for energy efficient computing. International Symposium on Low Power Electronics and Design, 1996. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. E. Candes, J. Romberg, and T. Tao. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory, 52:489--509, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Thomas Cover and Joy Thomas.Elements of Information Theory. Wiley Interscience, 1991. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. D. Donoho. Compressed sensing. IEEE Transactions on Information Theory, 52(4):1289--1306, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. I. Daubechies, O. Runborg, and J. Zou. A sparse spectral method for homogenization multiscale problems. Multiscale Model. Sim., 6(3):711--740, 2007.Google ScholarGoogle ScholarCross RefCross Ref
  9. A. Gilbert, S. Guha, P. Indyk, M. Muthukrishnan, and M. Strauss. Near-optimal sparse Fourier representations via sampling.STOC, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. O. Goldreich and L. Levin. A hard-corepredicate for allone-way functions. STOC, pages 25--32, 1989. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Anna C. Gilbert, Yi Li, Ely Porat, and Martin J. Strauss. Approximate sparse recovery: optimizing time and measurements. In STOC, pages 475--484, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. A. Gilbert, M. Muthukrishnan, and M. Strauss. Improved time bounds for near-optimal space Fourier representations.SPIE Conference, Wavelets, 2005.Google ScholarGoogle Scholar
  13. A.C. Gilbert, M.J. Strauss, and J. A. Tropp. A tutorial on fast Fourier sampling. Signal Processing Magazine, 2008.Google ScholarGoogle ScholarCross RefCross Ref
  14. H. Hassanieh, P. Indyk, D. Katabi, and E. Price. sFFT: Sparse Fast Fourier Transform. http://groups.csail.mit.edu/netmit/sFFT/, 2012.Google ScholarGoogle Scholar
  15. H. Hassanieh, P. Indyk, D. Katabi, and E. Price. Simple and practical algorithm for sparse Fourier transform. SODA, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Juha Heiskala and John Terry, Ph.D. OFDM Wireless LANs: A Theoretical and Practical Guide. Sams, Indianapolis, IN, USA, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. P. Indyk, E. Price, and D. P. Woodruff. On the power of adaptivity in sparse recovery. FOCS, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. M. A. Iwen. Combinatorial sublinear-time Fourier algorithms.Foundations of Computational Mathematics, 10:303--338, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. J. Kahn, G. Kalai, and N. Linial. The influence of variables on boolean functions. FOCS, 1988. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. E. Kushilevitz and Y. Mansour. Learning decision trees using the Fourier spectrum. STOC, 1991. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. N. Linial, Y. Mansour, and N. Nisan. Constant depth circuits, Fourier transform, and learnability. Journal of the ACM (JACM), 1993. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Mengda Lin, A. P. Vinod, and Chong Meng Samson See. A new exible filter bank for low complexity spectrum sensing in cognitive radios. Journal of Signal Processing Systems, 62(2):205--215, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Y. Mansour. Randomized interpolation and approximation of sparse polynomials. ICALP, 1992. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. G. Marsaglia. Evaluating the normal distribution.Journal of Statistical Software, 11(4):1--7, 2004.Google ScholarGoogle ScholarCross RefCross Ref
  25. A. Mueen, S. Nath, and J. Liu. Fast approximate correlation for massive time-series data. InProceedings of the 2010 international conference on Management of data, pages 171--182. ACM, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. R. O'Donnell. Some topics in analysis of boolean functions (tutorial). STOC, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. E. Price and D. P. Woodruff. (1+ε)-approximate sparse recovery. FOCS, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Nearly optimal sparse fourier transform

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      STOC '12: Proceedings of the forty-fourth annual ACM symposium on Theory of computing
      May 2012
      1310 pages
      ISBN:9781450312455
      DOI:10.1145/2213977

      Copyright © 2012 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 19 May 2012

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      Overall Acceptance Rate1,469of4,586submissions,32%

      Upcoming Conference

      STOC '24
      56th Annual ACM Symposium on Theory of Computing (STOC 2024)
      June 24 - 28, 2024
      Vancouver , BC , Canada

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader