skip to main content
research-article

Updated sparse cholesky factors for corotational elastodynamics

Published:07 September 2012Publication History
Skip Abstract Section

Abstract

We present warp-canceling corotation, a nonlinear finite element formulation for elastodynamic simulation that achieves fast performance by making only partial or delayed changes to the simulation's linearized system matrices. Coupled with an algorithm for incremental updates to a sparse Cholesky factorization, the method realizes the stability and scalability of a sparse direct method without the need for expensive refactorization at each time step. This finite element formulation combines the widely used corotational method with stiffness warping so that changes in the per-element rotations are initially approximated by inexpensive per-node rotations. When the errors of this approximation grow too large, the per-element rotations are selectively corrected by updating parts of the matrix chosen according to locally measured errors. These changes to the system matrix are propagated to its Cholesky factor by incremental updates that are much faster than refactoring the matrix from scratch. A nested dissection ordering of the system matrix gives rise to a hierarchical factorization in which changes to the system matrix cause limited, well-structured changes to the Cholesky factor. We show examples of simulations that demonstrate that the proposed formulation produces results that are visually comparable to those produced by a standard corotational formulation. Because our method requires computing only partial updates of the Cholesky factor, it is substantially faster than full refactorization and outperforms widely used iterative methods such as preconditioned conjugate gradients. Our method supports a controlled trade-off between accuracy and speed, and unlike most iterative methods its performance does not slow for stiffer materials but rather it actually improves.

Skip Supplemental Material Section

Supplemental Material

tp208_12.mp4

mp4

19.5 MB

References

  1. Barrett, R., Berry, M., Chan, T., Demmel, J., Donato, J., Dongarra, J., Eijkhout, V., Pozo, R., Romine, C., and van der Vorst, H. 1993. Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods. SIAM, Pennsylvania, PA.Google ScholarGoogle Scholar
  2. Belytschko, T. and Hsieh, B. 1979. Application of higher order corotational stretch theories to nonlinear finite element analysis. Comput. Struct. 11, 175--182.Google ScholarGoogle ScholarCross RefCross Ref
  3. Bergou, M., Wardetzky, M., Robinson, S., Audoly, B., and Grinspun, E. 2008. Discrete elastic rods. ACM Trans. Graph. 27, 3, 63:1--63:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Botsch, M., Bommes, D., and Kobbelt, L. 2005. Efficient linear system solvers for mesh processing. In Proceedings of the IMA Conference on the Mathematics of Surfaces. Springer, 62--83. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Bridson, R., Fedkiw, R., and Muller-Fischer, M. 2006. Fluid simulation: SIGGRAPH course notes. In ACM SIGGRAPH Courses. 1--87. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Bridson, R., Marino, S., and Fedkiw, R. 2003. Simulation of clothing with folds and wrinkles. In Proceedings of the Symposium on Computer Animation. 28--36. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Chen, Y., Davis, T. A., Hager, W. W., and Rajamanickam, S. 2008. Algorithm 887: CHOLMOD, supernodal sparse Cholesky factorization and update/downdate. ACM Trans. Math. Softw. 35, 22:1--22:14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Chentanez, N., Alterovitz, R., Ritchie, D., Cho, L., Hauser, K. K., Goldberg, K., Shewchuk, J. R., and O'Brien, J. F. 2009. Interactive simulation of surgical needle insertion and steering. ACM Trans. Graph. 28, 3, 88.1--88.10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Choi, M. G. and Ko, H.-S. 2005. Modal warping: Real-Time simulation of large rotational deformation and manipulation. IEEE Trans. Vis. Comput. Graph. 11, 1, 91--101. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Cholesky, A.-L. 1910. Sur la résolution numérique des systèmes d'équations linéaires. Manuscript. Subsequently published in Bull. de la Sabix 39, 81--95, 2005.Google ScholarGoogle Scholar
  11. Courtecuisse, H., Allard, J., Duriez, C., and Cotin, S. 2010. Asynchronous preconditioners for efficient solving of non-linear deformations. In Proceedings of the 7th Workshop on Virtual Reality Interaction and Physical Simulation. 59--68.Google ScholarGoogle Scholar
  12. Davis, T. A. 2006. Direct Methods for Sparse Linear Systems. Fundamentals of Algorithms, vol. 2, SIAM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Davis, T. A. and Hager, W. W. 1999. Modifying a sparse Cholesky factorization. SIAM J. Matrix Anal. Appl. 20, 3, 606--627. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Davis, T. A. and Hager, W. W. 2009. Dynamic supernodes in sparse Cholesky update/downdate and triangular solves. ACM Trans. Math. Softw. 35, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Etzmuss, O., Keckeisen, M., and Strasser, W. 2003. A fast finite element solution for cloth modelling. In Proceedings of the 11th Pacific Conference on Computer Graphics and Applications. 244--251. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Felippa, C. 2007. Introduction to finite element methods. http://www.colorado.edu/engineering/cas/courses.d/NFEM.d.Google ScholarGoogle Scholar
  17. George, A. 1973. Nested dissection of a regular finite element mesh. SIAM J. Numer. Anal. 10, 2, 345--363.Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Gibson, S. F. F. and Mirtich, B. 1997. A survey of deformable modeling in computer graphics. Tech. rep. TR97-19, Mitsubishi Electric Research Laboratory. November.Google ScholarGoogle Scholar
  19. Gill, P. E., Golub, G. H., Murray, W., and Saunders, M. A. 1974. Methods for modifying matrix factorizations. Math. Comput. 28, 126, 505--535.Google ScholarGoogle Scholar
  20. Golub, G. H. and Van Loan, C. F. 1996. Matrix Computations, 3rd Ed. The Johns Hopkins University Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Gould, N. I. M., Scott, J. A., and Hu, Y. 2007. A numerical evaluation of sparse direct solvers for the solution of large sparse symmetric linear systems of equations. ACM Trans. Math. Softw. 33, 2, 1--32. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Grcar, J. F. 2011. John von Neumann's analysis of Gaussian elimination and the origins of modern numerical analysis. SIAM Rev. 53, 4, 607--682. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Grinspun, E., Hirani, A. N., Desbrun, M., and Schröder, P. 2003. Discrete shells. In Proceedings of the Symposium on Computer Animation. 62--67. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Hestenes, M. R. and Stiefel, E. 1952. Methods of conjugate gradients for solving linear systems. J. Res. Nat. Bureau Standards 49, 409--436.Google ScholarGoogle ScholarCross RefCross Ref
  25. Horn, B. K. P. 1987. Closed-Form solution of absolute orientation using unit quaternions. J. Opt. Soc. A 4, 4, 629--642.Google ScholarGoogle ScholarCross RefCross Ref
  26. Irving, G., Teran, J., and Fedkiw, R. 2004. Invertible finite elements for robust simulation of large deformation. In Proceedings of the Symposium on Computer Animation. 131--140. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Karypis, G. and Kumar, V. 1995. A fast and high quality multilevel scheme for partitioning irregular graphs. In Proceedings of the International Conference on Parallel Processing. 113--122.Google ScholarGoogle Scholar
  28. Li, X. S. and Demmel, J. W. 1999. A scalable sparse direct solver using static pivoting. In Proceedings of the 9th SIAM Conference on Parallel Processing for Scientic Computing. 1--10.Google ScholarGoogle Scholar
  29. Lipton, R. J., Rose, D. J., and Tarjan, R. E. 1979. Generalized nested dissection. SIAM J. Numer. Anal. 16, 2, 346--358.Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Martin, S., Kaufmann, P., Botsch, M., Grinspun, E., and Gross, M. 2010. Unified simulation of elastic rods, shells, and solids. ACM Trans. Graph. 29, 4, 39:1--39:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Müller, M., Dorsey, J., McMillan, L., Jagnow, R., and Cutler, B. 2002. Stable real-time deformations. In Proceedings of the Symposium on Computer Animation. 49--54. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Müller, M. and Gross, M. 2004. Interactive virtual materials. In Proceedings of Graphics Interface Conference. 239--246. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Müller, M., Heidelberger, B., Teschner, M., and Gross, M. 2005. Meshless deformations based on shape matching. ACM Trans. Graph. 24, 3, 471--478. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Nealen, A., Müller, M., Keiser, R., Boxerman, E., and Carlson, M. 2006. Physically based deformable models in computer graphics. Comput. Graph. Forum 25, 4, 809--836.Google ScholarGoogle ScholarCross RefCross Ref
  35. Nour-Omid, B. and Rankin, C. C. 1991. Finite rotation analysis and consistent linearization using projectors. Comput. Meth. Appl. Mechan. Engin. 93, 353--384.Google ScholarGoogle ScholarCross RefCross Ref
  36. Parker, E. G. and O'Brien, J. F. 2009. Real-Time deformation and fracture in a game environment. In Proceedings of the Symposium on Computer Animation. 156--166. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. 2002. Numerical Recipes in C++: The Art of Scientific Computing. Cambridge University Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Shewchuk, J. R. 1994. An introduction to the conjugate gradient method without the agonizing pain. Tech. rep. CMU-CS-94-125, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Sorkine, O., Cohen-Or, D., Irony, D., and Toledo, S. 2005. Geometry-Aware bases for shape approximation. IEEE Trans. Vis. Comput. Graph. 11, 2, 1--11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Terzopoulos, D., Platt, J., Barr, A., and Fleischer, K. 1987. Elastically deformable models. In Proceedings of SIGGRAPH Conference. 205--214. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Toledo, S. 2003. TAUCS: A library of sparse linear solvers. http://www.tau.ac.il/~stoledo/taucs.Google ScholarGoogle Scholar
  42. Zhu, Y., Sifakis, E., Teran, J., and Brandt, A. 2010. An efficient multigrid method for the simulation of high-resolution elastic solids. ACM Trans. Graph. 29, 2, 16:1--16:18. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Updated sparse cholesky factors for corotational elastodynamics

              Recommendations

              Comments

              Login options

              Check if you have access through your login credentials or your institution to get full access on this article.

              Sign in

              Full Access

              • Published in

                cover image ACM Transactions on Graphics
                ACM Transactions on Graphics  Volume 31, Issue 5
                August 2012
                107 pages
                ISSN:0730-0301
                EISSN:1557-7368
                DOI:10.1145/2231816
                Issue’s Table of Contents

                Copyright © 2012 ACM

                Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

                Publisher

                Association for Computing Machinery

                New York, NY, United States

                Publication History

                • Published: 7 September 2012
                • Revised: 1 February 2012
                • Accepted: 1 February 2012
                • Received: 1 September 2011
                Published in tog Volume 31, Issue 5

                Permissions

                Request permissions about this article.

                Request Permissions

                Check for updates

                Qualifiers

                • research-article
                • Research
                • Refereed

              PDF Format

              View or Download as a PDF file.

              PDF

              eReader

              View online with eReader.

              eReader