skip to main content
research-article
Free Access

The challenges ahead for bio-inspired 'soft' robotics

Published:01 November 2012Publication History
Skip Abstract Section

Abstract

Soft materials may enable the automation of tasks beyond the capacities of current robotic technology.

References

  1. Asada, M., Hosoda, K., Kuniyoshi, Y., Ishiguro, H., Inui, T., Yoshikawa, Y., Ogino, M. and Yoshida, C. Cognitive developmental robotics: A survey. IEEE Trans. on Autonomous Mental Development 1, 1 (2009), 12--34. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Ayers, J. and Witting, J. Biomimetic approaches to the control of underwater walking machines. Phil. Trans. A Math. Phys. Eng. Sci. 365, 1850 (2007), 273--295.Google ScholarGoogle ScholarCross RefCross Ref
  3. Billard, A., Calinon, S., Dillmann, R. and Schaal, S. Robot programming by demonstration. Handbook of Robotics. B. Siciliano and O. Khatib, eds. Springer-Verlag, Berlin, Heidelberg, 2008, 1372--1394.Google ScholarGoogle Scholar
  4. Bongard, J.C. Morphological change in machines accelerates the evolution of robust behavior. Proc. Nat. Acad. Sciences USA (2011).Google ScholarGoogle ScholarCross RefCross Ref
  5. Brooks, R.A. A robust layered control system for a mobile robot. IEE Journal of Robotics and Automation, RA-2 (1986), 14--23.Google ScholarGoogle ScholarCross RefCross Ref
  6. Brooks, R.A. Cambrian Intelligence: The Early History of the New AI. MIT Press, Cambridge, MA, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Conradt, J., Cook, M., Berner, R., Lichsteiner, P., Douglas, R.J. and Delbruck, T. A pencil-balancing robot using a pair of AER dynamic vision sensors. In Proc. of Int. Conf. on Circuits and Systems, (2009), 781--784.Google ScholarGoogle ScholarCross RefCross Ref
  8. Cory, R. Supermaneuverable Perching. Ph.D. Thesis. MIT, Cambridge, MA, June 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Cutkosky, M.R. and Kim, S. Design and fabrication of multi-material structures for bioinspired robots. Phil. Trans. R. Soc. 367, (2009), 1799--1813.Google ScholarGoogle ScholarCross RefCross Ref
  10. Dahiya, R.S., Metta, G., Valle, M. and Sandini, G. Tactile sensing---From humans to humanoids. IEEE Trans. on Robotics 26 (2010), 1--20. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Dillmann, R., Asfour, T., Cheng, G. and Ude, A. Toward cognitive humanoid robots. Special Issue: Int. J. of Humanoid Robotics 5, 2 (2008).Google ScholarGoogle Scholar
  12. Dollar, A.M and Howe, H.D. The highly adaptive SDM hand: Design and performance evaluation. Int. J. of Robotics Research 29, 5 (2010), 585--597. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Fiazza, C., Salumae, T., Listak, M. et al. Biomimetic mechanical design for soft-bodied underwater vehicles. In Proc. of IEEE Oceans (2010), 1--7.Google ScholarGoogle Scholar
  14. Floreano, D. and Mattiussi, C. Bio-Inspired Artificial Intelligence: Theories, Methods, and Technologies. MIT Press, Cambridge, MA, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Floyd, S. and Sitti, M. Design and development of the lifting and propulsion mechanism for a biologically inspired water running robot. IEEE Trans. on Robotics 24, 3 (2008): 698--709. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Gates, B. A robot in every home. Scientific American (Jan. 2007) 58--65.Google ScholarGoogle Scholar
  17. Hoffmann, M., Marques, H.G., Arieta, A., Sumioka, H., Lungarella, M. and Pfeifer, R. Body schema in robotics: A review. IEEE Trans. on Autonomous Mental Development 2, 4 (2010), 304--324. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Hosoda, K., Sakaguchi, Y., Takayama, H. and Takuma, T. Pneumatic-driven jumping robot with anthropomimetic muscular skeleton structure. Autonomous Robots 28, 3 (2009), 307--316. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Iida, F. Biologically inspired motor control for underactuated robots---Trends and challenges. Robot Motion and Control, K.R. Kozlowski, ed. LNCIS 396, (2009), 145--154.Google ScholarGoogle Scholar
  20. Ijspeert, A.J., Crespi, A., Ryczko, D. and Cabelguen, J.M. From swimming to walking with a salamander robot driven by a spinal cord model. Science 315, 5817 (2007), 1416--1420.Google ScholarGoogle ScholarCross RefCross Ref
  21. Kemp, C.C., Edsinger, A. and Torres-Jara, E. Challenges for robot manipulation in human environments. IEEE Robotics and Automation Magazine 14 (2007), 20--29.Google ScholarGoogle ScholarCross RefCross Ref
  22. Kovac, M., Schlegel, M., Zufferey, J.-C. and Floreano, D. Steerable miniature jumping robot. Autonomous Robot 28 (2010), 295--306. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Laschi, C., Mazzolai, B., Cianchetti, M., Margheri, L., Follador, M. and Dario, P. A soft robot arm inspired by the octopus. Advanced Robotics 26, 7 (2012), 709--727.Google ScholarGoogle ScholarCross RefCross Ref
  24. Lens, T., Kunz, J., Trommer, C., Karguth, A. and von Stryk, O. BioRob-Arm: A quickly deployable and intrinsically safe, light-weight robot arm for service robotics applications. In Proc. of 41st Intl. Symp. on Robotics, (2010), 905--910.Google ScholarGoogle Scholar
  25. Li, Z., Weiren, S. and Zhi, Z. Simulated distribution of the retinal photoreceptors for space variant resolution imaging. Information Technology Journal 8, 5 (2009), 717--725.Google ScholarGoogle ScholarCross RefCross Ref
  26. Lin, H.-T., Leisk, G.G. and Trimmer, B. GoQBot: A caterpillar-inspired soft-bodied rolling robot. Bioinspiration and Biomimetics 6,2 (2011), 026007.Google ScholarGoogle ScholarCross RefCross Ref
  27. Liu, S.-C. and Delbruck, T. Neuromorphic sensory systems. Current Opinion in Neurobiology 20 (2010), 1--8.Google ScholarGoogle ScholarCross RefCross Ref
  28. Lungarella, M. and Sporns, O. Mapping information flow in sensorimotor networks. PLoS Computational Biology 2, 10 (2006), e144.Google ScholarGoogle ScholarCross RefCross Ref
  29. Malone, E., Berry, M. and Lipson, H. Freeform fabrication and characterization of Zn-air batteries. Rapid Prototyping Journal 14, 3 (2008), 128--140.Google ScholarGoogle ScholarCross RefCross Ref
  30. Manoonpong, P., Woegoetter, F. and Pasemann, F. Biological inspiration for mechanical design and control of autonomous walking robots: Towards life-like robots. Int. Journal of Applied Biomedical Engineering 3, 1 (2010), 1--12.Google ScholarGoogle Scholar
  31. Marques, H. et al. ECCE1: The first of a series of anthropomimetic musculoskeletal upper torsos. In Proc. of IEEE Conf. on Humanoid Robotics (2010), 391--396.Google ScholarGoogle Scholar
  32. Meyer, J.-A. and Guillot, A. Biologically inspired robotics. Handbook of Robotics, B. Siciliano and O. Khatib, eds. Springer-Verlag, Berlin, Heidelberg, 1395--1418, 2008.Google ScholarGoogle Scholar
  33. Minato, T., Yoshikawa, Y., Noda, T., Ikemoto, S., Ishiguro, H. and Asada, M. CB2: A child robot with biomimetic body for cognitive developmental robotics. In Proc. of IEEE-RAS Int. Conf. on Humanoid Robots (2007), 557--562.Google ScholarGoogle ScholarCross RefCross Ref
  34. Pearson, M., Pipe, A., Melhuish, C., Mitchinson, B. and Prescott, T. Whiskerbot: A robotic active touch system modeled on the rat whisker sensory system. J. of Adaptive Behavior 15, 3 (2007), 223--240. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Pfeifer, R. and Bongard, J.C. How the Body Shapes the Way We Think---A New View on Intelligence. MIT Press, Cambridge, MA, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Pfeifer, R., Lungarella, M. and Iida, F. Self-organization, embodiment, and biologically inspired robotics. Science 318 (2007), 1088--1093.Google ScholarGoogle ScholarCross RefCross Ref
  37. Raibert, M., Blankenspoor, K., Nelson, G., Playter, R. et al. BigDog, the rough-terrain quadruped robot. In Proc. of 17th World Congress of the Int. Fed. of Automatic Control, (2008), 10822--10825.Google ScholarGoogle Scholar
  38. Sodeyama, Y., Nishino, T., Namiki, Y., Nakanishi, Y., Mizuuchi, I. and Inaba, M. The designs and motions of a shoulder structure with a spherical thorax, scapulas, and collarbones for humanoid "Kojiro". In Proc. of Int. Conf. on Intelligent Robots and Systems (2008), 1465--1470.Google ScholarGoogle ScholarCross RefCross Ref
  39. Spenko, M.J., Haynes, G.C., Saunders, J.A., Cutkosky, M.R., Rizzi, A.A., Full, R.J. and Koditschek, D.E. Biologically inspired climbing with a hexapedal robot. Journal of Field Robotics 25, 4-5 (2008), 223--242. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Szeliski, R. Computer Vision: Algorithms and Applications. Springer Verlag, London, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Thrun, S., Burgard, W. and Fox, D. Probabilistic Robotics. MIT Press, Cambridge, MA, 2005.Google ScholarGoogle Scholar
  42. Umedachi, T., Takeda, K., Nakagaki, T., Kobayashi, R. and Ishiguro, A. Fully decentralized control of soft-bodied robot inspired by true slime mold. Biological Cybernetics 102, 3 (2010), 261--269. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Unver, O. and Sitti, M. Tankbot: A palm-size, tank like climbing robot on rough and smooth surfaces. Int. J. of Robotics Research 29, 14 (2010), 1761--1777. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Van Breugel, F., Regan W. and Lipson, H. From insects to machines: a passively stable, untethered flapping-hovering micro air vehicle. IEEE Robotics and Automation Magazine 15, 4 (2008), 68--74.Google ScholarGoogle ScholarCross RefCross Ref
  45. Webb, B., Consi, T.R. Biorobotics, MIT Press, Cambridge, MA, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Wing, J. Computational thinking. Commun. ACM 49, 3 (Mar. 2006), 33--35. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Wood, R.J. The first biologically inspired at-scale robotic insect. IEEE Trans. on Robotics 24, 2 (2008), 341--347. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Wyeth, G. and Milford, M. Spatial cognition for robots. IEEE Robotics Automation Magazine 16, 3 (2009), 24--32.Google ScholarGoogle ScholarCross RefCross Ref
  49. Zhou, C. and Low, K.-H. Better endurance and load capacity: An improved design of manta ray robot. J. of Bionic Engineering 7, 1 (2010), 137--144.Google ScholarGoogle ScholarCross RefCross Ref
  50. Ziegler, M., Hoffmann, M., Carbajah, J.P. and Pfeifer, R. Varying body stiffness for aquatic locomotion. In Proc of Int. Conf. on Robotics and Automation (2011), 2705--2712.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. The challenges ahead for bio-inspired 'soft' robotics

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in

          Full Access

          • Published in

            cover image Communications of the ACM
            Communications of the ACM  Volume 55, Issue 11
            November 2012
            104 pages
            ISSN:0001-0782
            EISSN:1557-7317
            DOI:10.1145/2366316
            Issue’s Table of Contents

            Copyright © 2012 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 1 November 2012

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • research-article
            • Popular
            • Refereed

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader

          HTML Format

          View this article in HTML Format .

          View HTML Format