skip to main content
article
Free Access

Multiresolution analysis for surfaces of arbitrary topological type

Published:01 January 1997Publication History
Skip Abstract Section

Abstract

Multiresolution analysis and wavelets provide useful and efficient tools for representing functions at multiple levels of detail. Wavelet representations have been used in a broad range of applications, including image compression, physical simulation, and numerical analysis. In this article, we present a new class of wavelets, based on subdivision surfaces, that radically extends the class of representable functions. Whereas previous two-dimensional methods were restricted to functions difined on R2, the subdivision wavelets developed here may be applied to functions defined on compact surfaces of arbitrary topological type. We envision many applications of this work, including continuous level-of-detail control for graphics rendering, compression of geometric models, and acceleration of global illumination algorithms. Level-of-detail control for spherical domains is illustrated using two examples: shape approximation of a polyhedral model, and color approximation of global terrain data.

References

  1. ANDERSSON, L., HALL, N., JAWERTH, B., AND PETERS, G. 1993. Wavelets on closed subsets of the real line. In Recent Advances in Wavelet Analysis, L. L. Schumaker and G. Webb, Eds. Academic Press, New York, 1-61.Google ScholarGoogle Scholar
  2. BARTLE, R.a. 1964. The Elements of Real Analysis. Wiley, New York.Google ScholarGoogle Scholar
  3. BERMAN, D., BARTELL, g., AND SALESIN, D. 1994. Multiresolution painting and compositing. In SIGGRAPH 94 Conference Proceedings, ACM SIGGRAPH, Addison Wesley, Reading, MA, 85-90. Google ScholarGoogle Scholar
  4. BEYLKIN, G., COIFMAN, R., AND ROKHLIN, V. 1991. Fast wavelet transforms and numerical algorithms. Commun. Pure Appl. Math. 44, 141-183.Google ScholarGoogle Scholar
  5. CARNICER, J. M., DAHMEN, W., AND PEi~A, J. M. 1994. Local decompositions of refinable spaces. Tech. Rep. Institut ffir Geometric und Praktische Mathematik, RWTH Aachen, Aachen, Germany.Google ScholarGoogle Scholar
  6. CATMULL, E. AND CLARK, g. 1978. Recursively generated B-spline surfaces on arbitrary topological meshes. Comput. Aided Des. 10, 6, 350-355.Google ScholarGoogle Scholar
  7. CERTAIN, A., POPOVIC, J., DEROSE, T., DUCHAMP, T., SALESIN, D., AND STUETZLE, W. 1996. Interactive multiresolution surface viewing. In SIGGRAPH 96 Conference Proceedings, ACM SIGGRAPH, Addison Wesley, Reading, MA, 91-98. Google ScholarGoogle Scholar
  8. CHUI, C. AND QUAK, E. 1992. Wavelets on a bounded interval. In Numerical Methods of Approximation Theory, D. Braess and L. L. Schumaker, Eds. Birkh~iuser-Verlag, Basel, 1-24.Google ScholarGoogle Scholar
  9. CHUI, C. 1992. Wavelet Analysis and its Applications, Vol. 1. Academic Press, Boston, MA.Google ScholarGoogle Scholar
  10. CHUI, C. K. AND SHI, X. 1992. Wavelets and multiscale interpolation. In Mathematical Methods in Computer Aided Geometric Design II, Tom Lyche and Larry L. Schumaker, Eds. Academic Press. Google ScholarGoogle Scholar
  11. COHEN, A., DAUBECHIES, I., AND VIAL, P. 1993. Multiresolution analysis, wavelets and fast algorithms on an interval. Appl. Comput. Harmon. Anal. 1, 1, 100-115.Google ScholarGoogle Scholar
  12. COHEN, A., DAUBECHIES, I., AND FEAUVEAU, J.-C. 1992. Biorthogonal bases of compactly supported wavelets. Commun. Pure Appl. Math. XLV, 485-560.Google ScholarGoogle Scholar
  13. DAHMEN, W. 1994. Stability of multiscale transformations. Tech. Rep. Institut ffir Geometrie und Praktische Mathematik, RWTH Aachen, Aachen, Germany.Google ScholarGoogle Scholar
  14. DAHMEN, W., KLEEMAN, B., PROSSDORF, S., AND SCHNEIDER, R. 1993. A multiscale method for the double layer potential equation on a polyhedron. Tech. Rep. 91, Institut ffir Geometrie und Praktische Mathematik, Rheinisch-Westf~ilische Technische Hochschule Aachen, Nov.Google ScholarGoogle Scholar
  15. DAHMEN, W. AND MICCHELLI, C. A. 1993. Using the refinement equation for evaluating integrals of wavelets. SIAM J. Numer. Anal. 30, 2 (April) 507-537. Google ScholarGoogle Scholar
  16. DAUBECHIES, I. 1988. Orthonormal bases of compactly supported wavelets. Comm. Pure Appl. Math. 41, 909-996.Google ScholarGoogle Scholar
  17. DAUBECHIES, I. 1992. Ten Lectures on Wavelets. SIAM, Philadelphia. Google ScholarGoogle Scholar
  18. DEVORE, R., JAWERTH, B., AND LUCIER, B. 1992. Image compression through wavelet transform coding. IEEE Trans. Inf. Theory 38, 2 (March), 719-746.Google ScholarGoogle Scholar
  19. DONOHO, D.L. 1994. Unconditional bases are optimal bases for data compression and for statistical estimation. Appl. Comput. Harmon. Anal. 1, 1, 100-115.Google ScholarGoogle Scholar
  20. Doo, D. AND SABIN, M. 1978. Behaviour of recursive division surfaces near extraordinary points. Computer Aided Design, 10, 6, 356-360.Google ScholarGoogle Scholar
  21. Doo, D. W. H. 1978. A recursive subdivision algorithm for fitting quadratic surfaces to irregular polyhedrons. PhD Thesis, Brunel Univ.Google ScholarGoogle Scholar
  22. DYN, N., LEVIN, D., AND GREGORY, J. 1990. A butterfly subdivision scheme for surface interpolation with tension control. ACM Trans. Graph. 9, 2, (April) 160-169. Google ScholarGoogle Scholar
  23. ECK, M., DEROSE, T., DUCHAMP, T., HOPPE, H., LOUNSBERY, M., AND STUETZLE, W. 1995. Multiresolution analysis of arbitrary meshes. In SIGGRAPH 95 Conference Proceedings, ACM SIGGRAPH, Addison Wesley, Reading, MA, 173-182. Google ScholarGoogle Scholar
  24. FINKELSTEIN, A. AND SALESIN, D. 1994. Multiresolution curves. In SIGGRAPH 94 Conference Proceedings, ACM SIGGRAPH, Addison-Wesley, Reading, MA, 261-268. Google ScholarGoogle Scholar
  25. FORSEY, D. AND BARTELS, R. 1988. Hierarchical B-spline refinement. Comput. Graph. 22, 4, 205-212. Google ScholarGoogle Scholar
  26. HALSTEAD, M., KASS, M., AND DEROSE, T. 1993. Efficient, fair interpolation using Catmull- Clark surfaces. Computer Graphics Annual Conference Series, (August) 35-44. Google ScholarGoogle Scholar
  27. HOPPE, H. 1994. Surface reconstruction from unorganized points. PhD thesis, TR 94-06-01. Univ. of Washington, Seattle, Washington, June. Google ScholarGoogle Scholar
  28. HOPPE, H., DEROSE, T., DUCHAMP, T., HALSTEAD, M., JIN, H., MCDONALD, J., SCHWEITZER, J., AND STUETZLE, W. 1994. Piecewise smooth surface reconstruction. Computer Graphics Annual Conference Series, (July) 295-302. Google ScholarGoogle Scholar
  29. HOPPE, H., DEROSE, T., DUCHAMP, T., MCDONALD, J., AND STUETZLE, W. 1993. Mesh optimization. Computer Graphics Annual Conference Series, (August) 19-26. Google ScholarGoogle Scholar
  30. JIA, R.-Q. AND MICCHELLI, C.A. 1991. Using the refinement equations for the construction of pre-wavelets II: Powers of two. In Curves and Surfaces, P. J. Laurent, A. LeM~haut~, and L. L. Schumaker, Eds. Academic Press, 209-246. Google ScholarGoogle Scholar
  31. LIU, Z., GORTLER, S. J., AND COHEN, M.E. 1994. Hierarchical spacetime control. Computer Graphics Annual Conference Series, (July) 35-22. Google ScholarGoogle Scholar
  32. LooP, C.T. 1987. Smooth subdivision surfaces based on triangles. Master's thesis, Dept. of Mathematics, Univ. of Utah, (August).Google ScholarGoogle Scholar
  33. LOUNSBERY, J.M. 1994. Multiresolution analysis for surfaces of arbitrary topological type. PhD thesis, Univ. of Washington, Seattle, WA, Sept. Google ScholarGoogle Scholar
  34. LUCIER, B.J. 1992. Wavelets and image compression. In T. Lyche and L. L. Schumaker, Eds., Mathematical Methods in Computer Aided Geometric Design II. Academic Press. Google ScholarGoogle Scholar
  35. MALLAT, S. 1989. A theory for multiresolution signal decomposition: The wavelet representation. IEEE Trans. Patt. Anal. Mach. Intell. 11, 7 (July) 674-693. Google ScholarGoogle Scholar
  36. MALLAT, S. AND HWANG, W. L. 1992. Singularity detection and processing with wavelets. IEEE Trans. Inf. Theory 38, 2 (March) 617-643.Google ScholarGoogle Scholar
  37. MEYER, Y. 1992. Ondelettes sur l'intervalle. Rev. Mat. Iberoamericana 7, 115-133.Google ScholarGoogle Scholar
  38. MEYER, Y. 1993. Wavelets and Operators. Cambridge University Press.Google ScholarGoogle Scholar
  39. MEYERS, D. 1994a. Multiresolution tiling. In Proceedings of Graphics Interface, (May) 25-32.Google ScholarGoogle Scholar
  40. MEYERS, D. 1994b. Reconstruction of surfaces from planar contours. PhD thesis, Univ. of Washington, Seattle, July. Google ScholarGoogle Scholar
  41. PENTLAND, A.P. 1992. Fast solutions to physical equilibrium and interpolation problems. Visual Comput. 8, 5-6 (June) 303-314.Google ScholarGoogle Scholar
  42. SCHRODER, P. AND SWELDENS, W. 1995. Spherical wavelets: Efficiently representing functions on the sphere. In SIGGRAPH 95 Conference Proceedings, ACM SIGGRAPH, Addison Wesley, Reading, MA, 161-172. Google ScholarGoogle Scholar
  43. SCHROEDER, W. J., ZARGE, J. A., AND LORENSON, W.E. 1992. Decimation of triangle meshes. Comput. Graph. 26, 2, 65-70. Google ScholarGoogle Scholar
  44. SWELDENS, W. 1994. Construction and applications of wavelets in numerical analysis. PhD thesis, Katholieke Universiteit Leuven, Leuven, Belgium.Google ScholarGoogle Scholar
  45. TURK, G. 1992. Re-tiling polygonal surfaces. Comput. Graph. 26, 2, 55-64. Google ScholarGoogle Scholar

Index Terms

  1. Multiresolution analysis for surfaces of arbitrary topological type

              Recommendations

              Comments

              Login options

              Check if you have access through your login credentials or your institution to get full access on this article.

              Sign in

              Full Access

              PDF Format

              View or Download as a PDF file.

              PDF

              eReader

              View online with eReader.

              eReader