skip to main content
research-article

Ensemble approaches for regression: A survey

Published:07 December 2012Publication History
Skip Abstract Section

Abstract

The goal of ensemble regression is to combine several models in order to improve the prediction accuracy in learning problems with a numerical target variable. The process of ensemble learning can be divided into three phases: the generation phase, the pruning phase, and the integration phase. We discuss different approaches to each of these phases that are able to deal with the regression problem, categorizing them in terms of their relevant characteristics and linking them to contributions from different fields. Furthermore, this work makes it possible to identify interesting areas for future research.

References

  1. Aggarwal, N., Prakash, N., and Sofat, S. 2010. Content management system effort estimation using bagging predictors. In Proceedings of the International Joint Conference on Computer Information Systems Sciences and Engineering Technological Developments in Education and Automation, M. Iskander, V. Kapila, and M. Karim, Eds. 19--24.Google ScholarGoogle Scholar
  2. Aha, D. W. and Bankert, R. L. 1996. A comparative evaluation of sequential feature selection algorithms. In Learning from Data, D. Fisher and H.-J. Lenz, Eds. Springer, Chapter 4, 199--206.Google ScholarGoogle Scholar
  3. Aksela, M. 2003. Comparison of classifier selection methods for improving committee performance. In Proceedings of the International Workshop on Multiple Classifier Systems. Lecture Notes in Computer Science, vol. 2709. Springer, 84--93. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Al-Ani, A. 2005. Feature subset selection using ant colony optimization. Int. J. Comput. Intell. 2, 1, 53--58.Google ScholarGoogle Scholar
  5. Avnimelech, R. and Intrator, N. 1999. Boosting regression estimators. Neural Comput. 11, 499--520. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Azevedo, P. J. and Jorge, A. M. 2007. Iterative reordering of rules for building ensembles without relearning. In Proceedings of the International Conference on Discovery Science. Lecture Notes in Computer Science, vol. 4755. Springer, 56--67. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Azevedo, P. J. and Jorge, A. M. 2010. Ensembles of jittered association rule classifiers. Data Min. Knowl. Discov. 21, 1, 91--129. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Bakker, B. and Heskes, T. 2003. Clustering ensembles of neural network models. Neural Netw. 16, 2, 261--269. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Bentley, J. L. 1975. Multidimensional binary search trees used for associative searching. Comm. ACM 18, 9, 509--517. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Bezerra, G. B., Barra, T. V., Castro, L. N., and von Zuben, F. J. 2005. Adaptive radius immune algorithm for data clustering. In Proceedings of the International Conference on Artificial Immune Systems (ICARIS'05). Lecture Notes in Computer Science, vol. 3627. Springer, 290--303. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Bifet, A., Holmes, G., Pfahringer, B., Kirkby, R., and Gavaldà, R. 2009. New ensemble methods for evolving data streams. In Proceedings of the Annual ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD'09). ACM, New York, 139--148. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Blockeel, H. and Vanschoren, J. 2007. Experiment databases: Towards an improved experimental methodology in machine learning. In Proceedings of the 11th European Conference on Principles and Practice of Knowledge Discovery in Databases (PKDD'07). Lecture Notes in Computer Science, vol. 4702. Springer, 6--17. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Borra, S. and Ciaccio, A. D. 2002. Improving nonparametric regression methods by bagging and boosting. Comput. Statist. Data Anal. 38, 4, 407--420. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Brazdil, P., Giraud-Carrier, C., Soares, C., and Vilalta, R. 2009. Metalearning: Applications to Data Mining. Springer. Google ScholarGoogle ScholarCross RefCross Ref
  15. Breiman, L. 1996a. Bagging predictors. Mach. Learn. 26, 123--140. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Breiman, L. 1996b. Heuristics of instability and stabilization in model selection. Ann. Statist. 24, 6, 2350--2383.Google ScholarGoogle ScholarCross RefCross Ref
  17. Breiman, L. 1996c. Stacked regressions. Mach. Learn. 24, 49--64. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Breiman, L. 2000. Randomizing outputs to increase prediction accuracy. Mach. Learn. 40, 3, 229--242. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Breiman, L. 2001a. Random forests. Mach. Learn. 45, 5--32. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Breiman, L. 2001b. Using iterated bagging to debias regressions. Mach. Learn. 45, 3, 261--277. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Brown, G. 2004. Diversity in neural network ensembles. Ph.D. thesis, University of Birmingham.Google ScholarGoogle Scholar
  22. Brown, G., Wyatt, J. L., Harris, R., and Yao, X. 2005a. Diversity creation methods: A survey and categorisation. Inf. Fusion 6, 5--20.Google ScholarGoogle ScholarCross RefCross Ref
  23. Brown, G., Wyatt, J. L., and Tino, P. 2005b. Managing diversity in regression ensembles. J. Mach. Learn. Res. 6, 1621--1650. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Buhlmann, P. 2010. Bagging, Boosting and Ensemble Methods. Springer.Google ScholarGoogle Scholar
  25. Buja, A. and Stuetzle, W. 2006. Observations on bagging. Statistica Sinica 16, 323--351.Google ScholarGoogle Scholar
  26. Cai, T. and Wu, X. 2008. Research on ensemble learning based on discretization method. In Proceedings of the 9th International Conference on Signal Processing (ICSP'08). 1528--1531.Google ScholarGoogle Scholar
  27. Caruana, R., Niculescu-Mozil, A., Crew, G., and Ksikes, A. 2004. Ensemble selection from libraries of models. In International Conference on Machine Learning. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Coelho, G. P. and von Zuben, F. J. 2006. The influence of the pool of candidates on the performance of selection and combination techniques in ensembles. In Proceedings of the International Joint Conference on Neural Networks. 10588--10595.Google ScholarGoogle Scholar
  29. Delve. 2002. Delve: Data for evaluating learning in valid experiments. http://www.cs.toronto.edu/~delve/Google ScholarGoogle Scholar
  30. Didaci. L. and Giacinto, G. 2004. Dynamic classifier selection by adaptive k-nearest neighbourhood rule. In Proceedings of the International Workshop on Multiple Classifier Systems, F. Roli, J. Kittler, and T. Windeatt, Eds. Lecture Notes in Computer Science, vol. 3077. Springer, 174--183.Google ScholarGoogle Scholar
  31. Dietterich, T. G. 1997. Machine-Learning research: Four current directions. AI Mag. 18, 4, 97--136.Google ScholarGoogle Scholar
  32. Domeniconi, C. and Yan, B. 2004. Nearest neighbor ensemble. In Proceedings of the International Conference on Pattern Recognition. Vol. 1. 228--231. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Domingos, P. 1997. Why does bagging work? A Bayesian account and its implications. In Proceedings of the International Conference on Knowledge Discovery and Data Mining. AAAI Press, 155--158.Google ScholarGoogle Scholar
  34. Drucker, H. 1997. Improving regressors using boosting techniques. In Proceedings of the 14th International Conference on Machine Learning (ICML'97). Morgan Kaufmann Publishers, San Fransisco, CA, 107--115. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Duffy, N. and Helmbold, D. 2002. Boosting methods for regression. Mach. Learn. 47, 153--200. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Ferrer, L., Sönmez, K., and Shriberg, E. 2009. An anticorrelation kernel for subsystem training in multiple classifier systems. J. Mach. Learn. Res. 10, 2079--2114. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Flannagan, S. and Sperber, L. 2008. Datamob/datasets. http://datamob.org/datsetsGoogle ScholarGoogle Scholar
  38. Frank, A. and Asuncion, A. 2010. UCI machine learning repository. http://archive.ics.uci.edu/mlGoogle ScholarGoogle Scholar
  39. Frank, E. and Pfahringer, B. 2006. Improving on bagging with input smearing. In Proceedings of the Pacific-Asia Conference on Knowledge Discovery and Data Mining. Springer, 97--106. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Freund, Y. and Schapire, R. 1996. Experiments with a new boosting algorithm. In Proceedings of the International Conference on Machine Learning. 148--156.Google ScholarGoogle Scholar
  41. Freund, Y. and Schapire, R. E. 1997. A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55, 119--139. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Friedman, J. H. 1991. Multivariate adaptive regression splines. The Ann. Statist. 19, 1, 1--141.Google ScholarGoogle ScholarCross RefCross Ref
  43. Friedman, J. H. 1996. Local learning based on recursive covering. Tech. rep.Google ScholarGoogle Scholar
  44. Friedman, J. H. 2001. Greedy function approximation: A gradient boosting machine. Ann. Statist. 29, 5, 1189--1232.Google ScholarGoogle ScholarCross RefCross Ref
  45. Friedman, J. H. 2002. Stochastic gradient boosting. Comput. Statist. Data Anal. 38, 4, 367--378. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Friedman, H. H. and Stuetzle, W. 1981. Projection pursuit regression. J. Amer. Statist. Regress. 76, 376, 817--823.Google ScholarGoogle Scholar
  47. García-Pedrajas, N., Hervás-Martínez, C., and Ortiz-Boyer, D. 2005. Cooperative coevolution of artificial neural network ensembles for pattern classification. IEEE Trans. Evolut. Comput. 9, 3, 271--302. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Geman, S., Bienenstock, E., and Doursat, R. 1992. Neural networks and the bias/variance dilemma. Neural Comput. 4, 1, 1--58. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Giacinto, G. and Roli, F. 1997. Adaptive selection of image classifiers. In Proceedings of the International Conference on Image Analysis and Processing. Lecture Notes in Computer Science, vol. 1310. Springer, 38--45. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Granitto, P., Verdes, P., and Ceccatto, H. 2005. Neural network ensembles: Evaluation of aggregation algorithms. Artif. Intell. 163, 2, 139--162. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Guvenir, H. A, and Uysal, I. 2000. Function approximation repository. http://funapp.cs.bilkent.edu. tr/DataSets/Google ScholarGoogle Scholar
  52. Hashem, S. 1993. Optimal linear combinations of neural networks. Ph.D. thesis, Purdue University. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. Hastie, T. and Tibshirani, R. 1996. Discriminant adaptive nearest neighbor classification. IEEE Trans. Pattern Anal. Mach. Intell. 18, 6, 607--616. Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Hastie, T., Tibshirani, R., and Friedman, J. H. 2001. The Elements of Statistical Learning: Data Mining, Inference, and Predictions. Springer Series in Statistics. Springer.Google ScholarGoogle Scholar
  55. Hernández-Lobato, D., Martínez-Muñoz, G., and Suárez, A. 2006. Pruning in ordered regression bagging ensembles. In Proceedings of the International Joint Conference on Neural Networks. 1266--1273.Google ScholarGoogle Scholar
  56. Ho, T. K. 1998. The random subspace method for constructing decision forests. IEEE Trans. Pattern Anal. Mach. Intell. 20, 8, 832--844. Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. Islam, M. M., Yao, X., and Murase, K. 2003. A constructive algorithm for training cooperative neural network ensembles. IEEE Trans. Neural Netw. 14, 4, 820--834. Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. Jain, A. and Zongker, D. 1997. Feature selection: Evaluation, application, and small sample performance. IEEE Trans. Pattern Anal. Mach. Intell. 19, 2, 153--158. Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. Jorge, A. M. and Azevedo, P. J. 2005. An experiment with association rules and classification: Post-Bagging and conviction. In Discovery Science. Lecture Notes in Computer Science, vol. 3735. Springer, 137--149. Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. Kim, H.-C., Pang, S., Je, H.-M., Kim, D., and Bang, S.-Y. 2003. Constructing support vector machine ensemble. Pattern Recogn. 36, 12, 2757--2767.Google ScholarGoogle ScholarCross RefCross Ref
  61. Kivinen, J. and Warmuth, M. K. 1997. Exponentiated gradient versus gradient descent for linear predictors. Inf. Comput. 132, 1, 1--63. Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. Ko, A. H.-R., Sabourin, R., and Britto Jr., A. D. S. 2008. From dynamic classifier selection to dynamic ensemble selection. Pattern Recogn. 41, 1718--1731. Google ScholarGoogle ScholarDigital LibraryDigital Library
  63. Kolen, J. F. and Pollack, J. B. 1990. Back propagation is sensitive to initial conditions. Tech. rep. TR-90-JK-BPSIC, The Ohio State University.Google ScholarGoogle Scholar
  64. Kolter, J. Z. and Maloof, M. A. 2007. Dynamic weighted majority: An ensemble method for drifting concepts. J. Mach. Learn. Res. 8, 2755--2790. Google ScholarGoogle ScholarDigital LibraryDigital Library
  65. Kotsiantis, S. and Pintelas, P. 2005. Selective averaging of regression models. Ann. Math. Comput. Teleinf. 1, 3, 65--74.Google ScholarGoogle Scholar
  66. Krogh, A. and Vedelsby, J. 1995. Neural network ensembles, cross validation, and active learning. Adv. Neural Inf. Process. Syst. 7, 231--238.Google ScholarGoogle ScholarDigital LibraryDigital Library
  67. Kuncheva, L. I. 2002. Switching between selection and fusion in combining classifiers: An experiment. IEEE Trans. Syst. Man Cybernet. B32, 2, 146--156. Google ScholarGoogle ScholarDigital LibraryDigital Library
  68. Kuncheva, L. I. 2004. Combining Pattern Classifiers. Wiley. Google ScholarGoogle ScholarDigital LibraryDigital Library
  69. Lasota, T., Telec, Z., Trawinski, B., and Trawinsky, K. 2009. A multi-agent system to assist with real estate appraisals using bagging ensembles. In Computational Collective Intelligence: Semantic Web, Social Networks and Multiagent Systems, N. Nguyen, R. Kowalczyk, and S. Chen, Eds. Lecture Notes in Artificial Intelligence, vol. 5796. Springer, 813--824. Google ScholarGoogle ScholarDigital LibraryDigital Library
  70. Lazarevic, A. 2001. Effective pruning of neural network classifier ensembles. In Proceedings of the International Joint Conference on Neural Networks. 796--801.Google ScholarGoogle ScholarCross RefCross Ref
  71. LeBlanc, M. and Tibshirani, R. 1996. Combining estimates in regression and classification. J. Amer. Statist. Assoc. 91, 1641--1650.Google ScholarGoogle Scholar
  72. Lehmann, E. 1998. Theory of Point Estimation. Springer.Google ScholarGoogle Scholar
  73. Lin, H.-T. and Li, L. 2005. Infinite ensemble learning with support vector machines. In Proceedings of the European Conference on Machine Learning. Lecture Notes in Artificial Intelligence, vol. 3720. Springer, 242--254. Google ScholarGoogle ScholarDigital LibraryDigital Library
  74. Liu, Y. and Yao, X. 1999. Ensemble learning via negative correlation. Neural Netw. 12, 1399--1404. Google ScholarGoogle ScholarDigital LibraryDigital Library
  75. Liu, Y., Yao, X., and Higuchi, T. 2000. Evolutionary ensembles with negative correlation learning. IEEE Trans. Evolut. Comput. 4, 4, 380--387. Google ScholarGoogle ScholarDigital LibraryDigital Library
  76. Loughrey, J. and Cunningham, P. 2005. Using early stopping to reduce overfitting in wrapper-based feature weighting. Tech. rep. TCD-CS-2005-41, Trinity College Dublin, Computer Science Department.Google ScholarGoogle Scholar
  77. Margineantu, D. D. and Dietterich, T. G. 1997. Pruning adaptive boosting. In Proceedings of the International Conference on Machine Learning. 211--218. Google ScholarGoogle ScholarDigital LibraryDigital Library
  78. Martinez-Munoz, G., Hernandez-Lobato, D., and Suarez, A. 2009. An analysis of ensemble pruning techniques based on ordered aggregation. IEEE Trans. Pattern Anal. Mach. Intell. 31, 245--259. Google ScholarGoogle ScholarDigital LibraryDigital Library
  79. Martinez-Munoz, G. and Suarez, A. 2006. Pruning in ordered bagging ensembles. In Proceedings of the International Conference on Machine Learning. 609--616. Google ScholarGoogle ScholarDigital LibraryDigital Library
  80. Martinez-Munoz, G. and Suarez, A. 2007. Using boosting to prune bagging ensembles. Pattern Recogn. Lett. 28, 1, 156--165. Google ScholarGoogle ScholarDigital LibraryDigital Library
  81. Matignon, R. 2007. Data Mining Using SAS Enterprise Miner. Wiley. Google ScholarGoogle ScholarDigital LibraryDigital Library
  82. Mendes-Moreira, J. 2008. Travel time prediction for the planning of mass transit companies: A machine learning approach. Ph.D. thesis, Faculty of Engineering, University of Porto.Google ScholarGoogle Scholar
  83. Mendes-Moreira, J., Jorge, A. M., Freire de Sousa, J., and Soares, C. 2012. Comparing state-of-the-art regression methods for long term travel time prediction. Intell. Data Anal. 16, 3.Google ScholarGoogle ScholarCross RefCross Ref
  84. Mendes-Moreira, J., Jorge, A. M., Soares, C., and Freire de Sousa, J. 2009. Ensemble learning: A study on different variants of the dynamic selection approach. In Proceedings of the 6th International Conference on Machine Learning and Data Mining, P. Perner, Ed. Lecture Notes in Computer Science, vol. 5632. Springer, 191--205. Google ScholarGoogle ScholarDigital LibraryDigital Library
  85. Meng, G., Pan, C., Zheng, N.,, and Sun, C. 2010. Skew estimation of document images using bagging. IEEE Trans. Image Process. 19, 7, 1837--1846. Google ScholarGoogle ScholarDigital LibraryDigital Library
  86. Merz, C. J. 1996. Dynamical selection of learning algorithms. In Proceedings of the International Workshop on Artificial Intelligence and Statistics, D. Fisher and H.-J. Lenz, Eds. Springer.Google ScholarGoogle ScholarCross RefCross Ref
  87. Merz, C. J. 1998. Classification and regression by combining models. Ph.D. thesis, University of California Irvine. Google ScholarGoogle ScholarDigital LibraryDigital Library
  88. Merz, C. J. and Pazzani, M. J. 1999. A principal components approach to combining regression estimates. Mach. Learn. 36, 9--32. Google ScholarGoogle ScholarDigital LibraryDigital Library
  89. Meyer, D., Leisch, F., and Hornik, K. 2003. The support vector machine under test. Neurocomput. 55, 1--2, 169--186.Google ScholarGoogle ScholarCross RefCross Ref
  90. MLG, U. D. 2011. http://mlg.ucd.ie/Google ScholarGoogle Scholar
  91. Molina, L. C., Belanche, L., and Nebot, A. 2002. Feature selection algorithms: A survey and experimental evaluation. In Proceedings of the IEEE International Conference on Data Mining. 306--313. Google ScholarGoogle ScholarDigital LibraryDigital Library
  92. Monti, S., Tamayo, P., Mesirov, J., and Golub, T. 2003. Consensus clustering: A resampling-based method for class discovery and visualization of gene expression microarray data. Mach. Learn., 91--118. Google ScholarGoogle ScholarDigital LibraryDigital Library
  93. Moreira, J. M., Sousa, J. F., Jorge, A. M., and Soares, C. 2006. An ensemble regression approach for bus trip time prediction. In Proceedings of the Meeting of the EURO Working Group on Transportation. 317--321. http://www.liaad.up.pt/~amjorge/docs/Triana/Moreira06b.pdf.Google ScholarGoogle Scholar
  94. Oh, I.-S., Lee, J.-S., and Moon, B.-R. 2004. Hybrid genetic algorithms for feature selection. IEEE Trans. Pattern Anal. Mach. Intell. 26, 11, 1424--1437. Google ScholarGoogle ScholarDigital LibraryDigital Library
  95. Opitz, D. W. 1999. Feature selection for ensembles. In Proceedings of the National Conference on Artificial Intelligence. AAAI Press, 379--384. Google ScholarGoogle ScholarDigital LibraryDigital Library
  96. Opitz, D. W. and Shavlik, J. W. 1996. Generating accurate and diverse members of a neural-network ensemble. Adv. Neural Inf. Process. Syst. 8, 535--541.Google ScholarGoogle Scholar
  97. Ortiz-Boyer, D., Hervas-Martinez, C., and Garcia-Pendrajas, N. 2005. Cixl2: A crossover operator for evolutionary algorithms based on population features. J. Artif. Intell. Res. 24, 1--48. Google ScholarGoogle ScholarDigital LibraryDigital Library
  98. Parmanto, B., Munro, P, W., and Doyle, H. R. 1996. Reducing variance of committee prediction with resampling techniques. Connect. Sci. 8, 3--4, 405--425.Google ScholarGoogle ScholarCross RefCross Ref
  99. Partridge, D. and Yates, W. B. 1996. Engineering multiversion neural-net systems. Neural Comput. 8, 4, 869--893. Google ScholarGoogle ScholarDigital LibraryDigital Library
  100. Perrone, M. P. and Cooper, L. N. 1993. When networks disagree: Ensemble methods for hybrid neural networks. In Neural Networks for Speech and Image Processing, R. Mammone, Ed. Chapman-Hall.Google ScholarGoogle Scholar
  101. Polikar, R. 2009. Ensemble learning. Scholarpedia 4, 1, 2776.Google ScholarGoogle ScholarCross RefCross Ref
  102. Pudil, P., Ferri, F., Novovicova, J., and Kittler, J. 1994. Floating search methods for feature selection with nonmonotonic criterion functions. In Proceedings of the IEEE International Conference on Pattern Recognition. Vol. 11. 279--283.Google ScholarGoogle Scholar
  103. Puuronen, S., Terziyan, V., and Tsymbal, A. 1999. A dynamic integration algorithm for an ensemble of classifiers. In Proceedings of the International Symposium on Methodologies for Intelligent Systems. Lecture Notes in Computer Science, vol. 1609. Springer, 592--600. Google ScholarGoogle ScholarDigital LibraryDigital Library
  104. Ranawana, R. and Palade, V. 2006. Multi-Classifier systems: Review and a roadmap for developers. Int. J. Hybrid Intell. Syst. 3, 1, 35--61. Google ScholarGoogle ScholarDigital LibraryDigital Library
  105. Ratsch, G., Demiriz, A., and Bennett, K. P. 2002. Sparse regression ensembles in infinite and finite hypothesis spaces. Mach. Learn. 48, 189--218. Google ScholarGoogle ScholarDigital LibraryDigital Library
  106. Raviv, Y. and Intrator, N. 1996. Bootstrapping with noise: An effective regularization technique. Connect. Sci. 8, 3--4, 355--372.Google ScholarGoogle ScholarCross RefCross Ref
  107. Robnik-Sikonja, M. 2004. Improving random forests. In Proceedings of the European Conference on Machine Learning. Lecture Notes in Artificial Intelligence, vol. 3201. Springer, 359--370.Google ScholarGoogle Scholar
  108. Robnik-Sikonja, M. and Kononenko, I. 2003. Theoretical and empirical analysis of relieff and rrelieff. Mach. Learn. 53, 1-2, 23--69. Google ScholarGoogle ScholarDigital LibraryDigital Library
  109. Rodriguez, J. J., Kuncheva, L. I., and Alonso, C. J. 2006. Rotation forest: A new classifier ensemble. IEEE Trans. Pattern Anal. Mach. Intell. 28, 10, 1619--1630. Google ScholarGoogle ScholarDigital LibraryDigital Library
  110. Rokach, L. 2009a. Collective-Agreement-Based pruning of ensembles. Comput. Statist. Data Anal. 53, 1015--1026. Google ScholarGoogle ScholarDigital LibraryDigital Library
  111. Rokach, L. 2009b. Pattern Classification Using Ensemble Methods. World Scientific. Google ScholarGoogle ScholarDigital LibraryDigital Library
  112. Rokach, L. 2009c. Taxonomy for characterizing ensemble methods in classification tasks: A review and annotated bibliography. Comput. Statist. Data Anal. 53, 12, 4046--4072. Google ScholarGoogle ScholarDigital LibraryDigital Library
  113. Rokach, L. 2010. Ensemble-Based classifiers. Artif. Intell. Rev. 33, 1--39. Google ScholarGoogle ScholarDigital LibraryDigital Library
  114. Roli, F., Giacinto, G,, and Vernazza, G. 2001. Methods for designing multiple classifier systems. In Proceedings of the International Workshop on Multiple Classifier Systems. Lecture Notes in Computer Science, vol. 2096. Springer, 78--87. Google ScholarGoogle ScholarDigital LibraryDigital Library
  115. Rooney, N. and Patterson, D. 2007. A weighted combination of stacking and dynamic integration. Pattern Recogn. 40, 4, 1385--1388. Google ScholarGoogle ScholarDigital LibraryDigital Library
  116. Rooney, N., Patterson, D., Anand, S., and Tsymbal, A. 2004. Dynamic integration of regression models. In Proceedings of the International Workshop on Multiple Classifier Systems. Lecture Notes in Computer Science, vol. 3181. Springer, 164--173.Google ScholarGoogle Scholar
  117. Rosen, B. E. 1996. Ensemble learning using decorrelated neural networks. Connect. Sci. 8, 3--4, 373--383.Google ScholarGoogle ScholarCross RefCross Ref
  118. Ruta, D. and Gabrys, B. 2001. Application of the evolutionary algorithms for classifier selection in multiple classifier systems with majority voting. In Proceedings of the International Workshop on Multiple Classifier Systems. Lecture Notes in Computer Science, vol. 2096. Springer, 399--408. Google ScholarGoogle ScholarDigital LibraryDigital Library
  119. Schapire, R. 1990. The strength of weak learnability. Mach. Learn. 5, 2, 197--227. Google ScholarGoogle ScholarDigital LibraryDigital Library
  120. Schclar, A. and Rokach, L. 2009. Random projection ensemble classifiers. In Proceedings of the International Conference on Enterprise Information Systems (ICEIS'09). Springer.Google ScholarGoogle Scholar
  121. Schclar, A., Tsinkinovsky, A., Rokach, L., Meisels, A., and Antwarg, L. 2009. Ensemble methods for improving the performance of neighborhood-based collaborative filtering. In Proceedings of the 3rd ACM Conference on Recommender Systems (RecSys'09). ACM Press, New York, 261--264. Google ScholarGoogle ScholarDigital LibraryDigital Library
  122. Shrestha, D. L. and Solomatine, D. P. 2006. Experiments with adaboost.rt, an improved boosting scheme for regression. Neural Comput. 18, 1678--1710. Google ScholarGoogle ScholarDigital LibraryDigital Library
  123. Skalak, D. B. 1994. Prototype and feature selection by sampling and random mutation hill climbing algorithms. In Proceedings of the International Conference on Machine Learning. Morgan Kaufmann, 293--301.Google ScholarGoogle ScholarCross RefCross Ref
  124. Skomoroch, P. 2008. Some datasets available on the web. http://www.datawrangling.com/some-datasets-available-on-the-webGoogle ScholarGoogle Scholar
  125. Stark, P. and Parker, R. 1995. Bounded-Variable least squares: An algorithm and applications. Comput. Statist. 10, 2, 129--141.Google ScholarGoogle Scholar
  126. Stone, M. 1974. Cross-Validatory choice and assessment of statistical predictions. J. Roy. Statist. Soc. B36, 2, 111--147.Google ScholarGoogle Scholar
  127. Strehl, A. and Ghosh, J. 2003. Cluster ensembles: A knowledge reuse framework for combining multiple partitions. J. Mach. Learn. Res. 3, 583--617. Google ScholarGoogle ScholarDigital LibraryDigital Library
  128. Tamon, C. and Xiang, J. 2000. On the boosting pruning problem. In Proceedings of the European Conference on Machine Learning. Lecture Notes in Computer Science, vol. 1810. Springer, 404--412. Google ScholarGoogle ScholarDigital LibraryDigital Library
  129. Thompson, S. K. and Seber, G. A. 1986. Adaptive Sampling. John Wiley & Sons.Google ScholarGoogle Scholar
  130. Tian, J., Wu, N., Chu, X., and Fan, Y. 2010. Predicting changes in protein thermostability brought about by single- or multi-site mutations. BMC Bioinf. 11, 370.Google ScholarGoogle ScholarCross RefCross Ref
  131. Todorovski, L. and Dzeroski, S. 2003. Combining classifiers with meta decision trees. Mach. Learn. 50, 3, 223--249. Google ScholarGoogle ScholarDigital LibraryDigital Library
  132. Torgo, L. Regression datasets. http://www.liaad.up.pt/ltorgo/Regression/Datasets.html.Google ScholarGoogle Scholar
  133. Tresp, V. and Taniguchi, M. 1995. Combining estimators using non-constant weighting functions. Adv. Neural Inf. Process. Syst. 7, 419--426.Google ScholarGoogle Scholar
  134. Tsang, I. W., Kocsor, A., and Kwok, J. T. 2006. Diversified svm ensembles for large data sets. In Proceedings of the International Conference on Machine Learning. Lecture Notes in Artificial Intelligence, vol. 4212. Springer, 792--800. Google ScholarGoogle ScholarDigital LibraryDigital Library
  135. Tsang, I. W., Kwok, J. T., and Lai, K. T. 2005. Core vector regression for very large regression problems. In Proceedings of the International Conference on Machine Learning. 912--919. Google ScholarGoogle ScholarDigital LibraryDigital Library
  136. Tsoumakas, G., Partalas, I., and Vlahavas, I. 2008. A taxonomy and short review of ensemble selection. In Proceedings of the Workshop on Supervised and Unsupervised Ensemble Methods and Their Applications.Google ScholarGoogle Scholar
  137. Tsymbal, A., Pechenizkiy, M., and Cunningham, P. 2006a. Dynamic integration with random forests. In Proceedings of the European Conference on Machine Learning (ECML'06). Lecture Notes in Artificial Intelligence, vol. 4212. Springer, 801--808. Google ScholarGoogle ScholarDigital LibraryDigital Library
  138. Tsymbal, A., Pechenizkiy, M., and Cunningham, P. 2006b. Dynamic integration with random forests. Tech. rep. TCD-CS-2006-23, The University of Dublin, Trinity College.Google ScholarGoogle Scholar
  139. Tsymbal, A., Pechenizkiy, M., Cunningham, P., and Puuronen, S. 2008. Dynamic integration of classifiers for handling concept drift. Inf. Fusion 9, 1, 56--68. Google ScholarGoogle ScholarDigital LibraryDigital Library
  140. Ueda, N. and Nakano, R. 1996. Generalization error of ensemble estimators. In Proceedings of the IEEE Conference on Neural Networks. Vol. 1. 90--95.Google ScholarGoogle Scholar
  141. Vafaie, H. and Jong, K. D. 1993. Robust feature selection algorithms. In Proceedings of the IEEE Conference on Tools for Artificial Intelligence. 356--363.Google ScholarGoogle Scholar
  142. Verikas, A., Lipnickas, A., Malmqvist, K., Becauskiene, M., and Gelzinis, A. 1999. Soft combining of neural classifiers: A comparative study. Pattern Recogn. Lett. 20, 4, 429--444. Google ScholarGoogle ScholarDigital LibraryDigital Library
  143. Vlachos, P. 2005. Statlib: Datasets archive. http://lib.stat.cmu.edu/datasets/.Google ScholarGoogle Scholar
  144. Wang, H., Fan, W., Yu, P. S., and Han, J. 2003. Mining concept-drifting data streams using ensemble classifiers. In ACM International Conference on Knowledge Discovery and Data Mining. Google ScholarGoogle ScholarDigital LibraryDigital Library
  145. Webb, G. I. and Zheng, Z. 2004. Multistrategy ensemble learning: Reducing error by combining ensemble learning techniques. IEEE Trans. Knowl. Data Engin. 16, 8, 980--991. Google ScholarGoogle ScholarDigital LibraryDigital Library
  146. Weyuker, E. J., Ostrand, T. J., and Bell, R. M. 2010. Comparing the effectiveness of several modeling methods for fault prediction. Empir. Softw. Engin. 15, 277--295. Google ScholarGoogle ScholarDigital LibraryDigital Library
  147. Wichard, J., Merkwirth, C., and Ogorzalek, M. 2003. Building ensembles with heterogeneous models. In Course of the International School on Neural Nets.Google ScholarGoogle Scholar
  148. Wilson, D. R. and Martinez, T. R. 1997. Improved heterogeneous distance functions. J. Artif. Intell. Res. 6, 1--34. Google ScholarGoogle ScholarCross RefCross Ref
  149. Witten, I. H. and Frank, E. 2011. Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann. Google ScholarGoogle ScholarDigital LibraryDigital Library
  150. Wolpert, D. H. 1992. Stacked generalization. Neural Netw. 5, 2, 241--259. Google ScholarGoogle ScholarDigital LibraryDigital Library
  151. Woods, K. 1997. Combination of multiple classifiers using local accuracy estimates. IEEE Trans. Pattern Anal. Mach. Intell. 19, 4, 405--410. Google ScholarGoogle ScholarDigital LibraryDigital Library
  152. Yang, J. and Honavar, V. 1997. Feature subset selection using a genetic algorithm. IEEE Trans. Intell. Syst. 13, 2, 44--49. Google ScholarGoogle ScholarDigital LibraryDigital Library
  153. Yankov, D., DeCoste, D., and Keogh, E. 2006. Ensembles of nearest neighbor forecasts. In Proceedings of the European Conference on Machine Learning. Lecture Notes in Artificial Intelligence, vol. 4212. Springer, 545--556. Google ScholarGoogle ScholarDigital LibraryDigital Library
  154. Yao, X., Fischer, M., and Brown, G. 2001. Neural network ensembles and their application to traffic flow prediction in telecommunications networks. Neural Netw. 1, 693--698.Google ScholarGoogle Scholar
  155. Yu, Y., Zhou, Z.-H., and Ting, K. M. 2007. Cocktail ensemble for regression. In Proceedings of the IEEE International Conference on Data Mining. 721--726. Google ScholarGoogle ScholarDigital LibraryDigital Library
  156. Zemel, R. S. and Pitassi, T. 2001. Advances in NeuralInformation Processing Systems. Vol. 13. MIT Press, Chapter A gradient-based boosting algorithm for regression problems, 696--702.Google ScholarGoogle Scholar
  157. Zenobi, G. and Cunningham, P. 2001. Using diversity in preparing ensembles of classifiers based on different feature subsets to minimize generalization error. In Proceedings of the European Conference on Machine Learning. Lecture Notes in Computer Science, vol. 2167. Springer, 576--587. Google ScholarGoogle ScholarDigital LibraryDigital Library
  158. Zhang, C.-X., Zhang, J.-S., and Wang, G.-W. 2008. An empirical study of using rotation forest to improve regressors. Appl. Math. Comput. 195, 2, 618--629.Google ScholarGoogle ScholarCross RefCross Ref
  159. Zhang, J., Zou, Y., and Fan, Y. 2009. Embedded neural network to model-based permanent magnet synchronous motor diagnostics. In Proceedings of the Power Electronics and Motion Control Conference. 1813--1817.Google ScholarGoogle Scholar
  160. Zhao, Q.-L., Jiang, Y.-H., and Xu, M. 2009. A fast ensemble pruning algorithm based on pattern mining process. Data Min. Knowl. Discov. 19, 277--292. Google ScholarGoogle ScholarDigital LibraryDigital Library
  161. Zhou, Z.-H. and Tang, W. 2003. Selective ensemble of decision trees. In Proceedings of the International Conference on Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing. Lecture Notes in Artificial Intelligence, vol. 2639. Springer, 476--483. Google ScholarGoogle ScholarDigital LibraryDigital Library
  162. Zhou, Z.-H., Wu, J., and Tang, W. 2002. Ensembling neural networks: Many could be better than all. Artif. Intell. 137, 239--263. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Ensemble approaches for regression: A survey

            Recommendations

            Comments

            Login options

            Check if you have access through your login credentials or your institution to get full access on this article.

            Sign in

            Full Access

            • Published in

              cover image ACM Computing Surveys
              ACM Computing Surveys  Volume 45, Issue 1
              November 2012
              455 pages
              ISSN:0360-0300
              EISSN:1557-7341
              DOI:10.1145/2379776
              Issue’s Table of Contents

              Copyright © 2012 ACM

              Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

              Publisher

              Association for Computing Machinery

              New York, NY, United States

              Publication History

              • Published: 7 December 2012
              • Accepted: 1 August 2011
              • Revised: 1 June 2011
              • Received: 1 January 2011
              Published in csur Volume 45, Issue 1

              Permissions

              Request permissions about this article.

              Request Permissions

              Check for updates

              Qualifiers

              • research-article
              • Research
              • Refereed

            PDF Format

            View or Download as a PDF file.

            PDF

            eReader

            View online with eReader.

            eReader