skip to main content
research-article

Time-series data mining

Authors Info & Claims
Published:07 December 2012Publication History
Skip Abstract Section

Abstract

In almost every scientific field, measurements are performed over time. These observations lead to a collection of organized data called time series. The purpose of time-series data mining is to try to extract all meaningful knowledge from the shape of data. Even if humans have a natural capacity to perform these tasks, it remains a complex problem for computers. In this article we intend to provide a survey of the techniques applied for time-series data mining. The first part is devoted to an overview of the tasks that have captured most of the interest of researchers. Considering that in most cases, time-series task relies on the same components for implementation, we divide the literature depending on these common aspects, namely representation techniques, distance measures, and indexing methods. The study of the relevant literature has been categorized for each individual aspects. Four types of robustness could then be formalized and any kind of distance could then be classified. Finally, the study submits various research trends and avenues that can be explored in the near future. We hope that this article can provide a broad and deep understanding of the time-series data mining research field.

References

  1. Abonyi, J., Fell, B., Nemeth, S., and Arva, P. 2003. Fuzzy clustering based segmentation of time-series. In Proceedings of the 5th International Symposium on Intelligent Data Analysis (IDA 03). Springer, 275--285.Google ScholarGoogle Scholar
  2. Agrawal, R., Faloutsos, C., and Swami, A. 1993. Efficient similarity search in sequence databases. In Proceedings of the 4th International Conference on Foundations of Data Organization and Algorithms. Springer, 69--84. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Agrawal, R., Lin, K.-I., Sawhney, H. S., and Shim, K. 1995. Fast similarity search in the presence of noise, scaling, and translation in time-series databases. In Proceedings of the 21st International Conference on Very Large Data Bases. Morgan Kaufmann, 490--501. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Ahmed, N., Atiya, A., El Gayar, N., El-Shishiny, H., and Giza, E. 2009. An empirical comparison of machine learning models for time series forecasting. Econometr. Rev. 29, 5, 594--621.Google ScholarGoogle ScholarCross RefCross Ref
  5. Ahmed, T., Oreshkin, B., and Coates, M. 2007. Machine learning approaches to network anomaly detection. In Proceedings of the 2nd USENIX Workshop on Tackling Computer Systems Problems with Machine Learning Techniques. USENIX Association, 1--6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. An, J., Chen, H., Furuse, K., Ohbo, N., and Keogh, E. 2003. Grid-Based indexing for large time series databases. In Intelligent Data Engineering and Automated Learning. Lecture Notes in Computer Science, vol. 1983. Springer 614--621.Google ScholarGoogle Scholar
  7. Antunes, C. and Oliveira, A. 2001. Temporal data mining: An overview. In Proceedings of the KDD Workshop on Temporal Data Mining. 1--13.Google ScholarGoogle Scholar
  8. Argyros, T. and Ermopoulos, C. 2003. Efficient subsequence matching in time series databases under time and amplitude transformations. In Proceedings of the 3rd IEEE International Conference on Data Mining. 481--484. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Assent, I., Krieger, R., Afschari, F., and Seidl, T. 2008. The TS-tree: Efficient time series search and retrieval. In Proceedings of the 11th International Conference on Extending Database Technology. 25--29. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Assent, I., Wichterich, M., Krieger, R., Kremer, H., and Seidl, T. 2009. Anticipatory DTW for efficient similarity search in time series databases. Proc. VLDB Endowm. 2, 1, 826--837. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Aßfalg, J., Kriegel, H., Kroger, P., Kunath, P., Pryakhin, A., and Renz, M. 2006. Similarity search on time series based on threshold queries. In Proceedings of the 10th International Conference on Extending Database Technology. 276. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Aßfalg, J., Kriegel, H., Kröger, P., Kunath, P., Pryakhin, A., and Renz, M. 2008. Similarity search in multimedia time series data using amplitude-level features. In Proceedings of the 14th International Conference on Advances in Multimedia Modeling. Springer, 123--133. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Bagnall, A. and Janacek, G. 2005. Clustering time series with clipped data. Mach. Learn. 58, 2, 151--178. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Bagnall, A., Janacek, G., De la Iglesia, B., and Zhang, M. 2003. Clustering time series from mixture polynomial models with discretised data. In Proceedings of the 2nd Australasian Data Mining Workshop. 105--120.Google ScholarGoogle Scholar
  15. Bagnall, A., Ratanamahatana, C., Keogh, E., Lonardi, S., and Janacek, G. 2006. A bit level representation for time series data mining with shape based similarity. Data Min. Knowl. Discov. 13, 1, 11--40. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Bai, J. and Ng, S. 2008. Forecasting economic time series using targeted predictors. J. Econometr. 146, 2, 304--317.Google ScholarGoogle ScholarCross RefCross Ref
  17. Bakshi, B. and Stephanopoulos, G. 1994. Representation of process trends--IV. Induction of real-time patterns from operating data for diagnosis and supervisory control. Comput. Chemi. Engin. 18, 4, 303--332.Google ScholarGoogle ScholarCross RefCross Ref
  18. Bakshi, B. and Stephanopoulos, G. 1995. Reasoning in time: Modeling, analysis, and pattern recognition of temporal process trends. Adv. Chem. Engin. 22, 485--548.Google ScholarGoogle ScholarCross RefCross Ref
  19. Bandera, J., Marfil, R., Bandera, A., Rodríguez, J., Molina-Tanco, L., and Sandoval, F. 2009. Fast gesture recognition based on a two-level representation. Pattern Recogn. Lett. 30, 13, 1181--1189. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Barone, P., Carfora, M., and March, R. 2009. Segmentation, classification and denoising of a time series field by a variational method. J. Math. Imag. Vis. 34, 2, 152--164. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Barreto, G. 2007. Time series prediction with the self-organizing map: A review. Perspect. Neural-Symbo. Integr. 77, 1, 135--158.Google ScholarGoogle ScholarCross RefCross Ref
  22. Bartolini, I., Ciaccia, P., and Patella, M. 2005. Warp: Accurate retrieval of shapes using phase of fourier descriptors and time warping distance. IEEE Trans. Pattern Anal. Mach. Intell. 27, 1, 142--147. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Bayer, R. and McCreight, E. 1972. Organization and maintenance of large ordered indexes. Acta Info. 1, 3, 173--189.Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Beckmann, N., Kriegel, H., Schneider, R., and Seeger, B. 1990. The R*-tree: An efficient and robust access method for points and rectangles. ACM SIGMOD Rec. 19, 2, 322--331. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Berchtold, S., Keim, D., and Kriegel, H. 2002. The X-tree: An index structure for high-dimensional data. Read. Multimedia Comput. Netw. 4, 1, 451--463. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Berkhin, P. 2006. A survey of clustering data mining techniques. Group. Multidimen. Data, 25--71.Google ScholarGoogle Scholar
  27. Berndt, D. and Clifford, J. 1994. Using dynamic time warping to find patterns in time series. In Proceedings of the AAAI-94 Workshop on Knowledge Discovery in Databases. 229--248.Google ScholarGoogle Scholar
  28. Berretti, S., Del Bimbo, A., and Pala, P. 2000. Retrieval by shape similarity with perceptual distance and effective indexing. IEEE Trans. Multimedia 2, 4, 225--239. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Bhargava, R., Kargupta, H., and Powers, M. 2003. Energy consumption in data analysis for on-board and distributed applications. In Proceedings of the ICML. Vol. 3.Google ScholarGoogle Scholar
  30. Bicego, M., Murino, V., and Figueiredo, M. 2003. Similarity-Based clustering of sequences using hidden Markov models. Lecture Notes in Computer Science, vol. 2743. Springer, 95--104.Google ScholarGoogle Scholar
  31. Bohm, C., Berchtold, S., and Keim, D. 2001. Searching in high-dimensional spaces: Index structures for improving the performance of multimedia databases. ACM Comput. Surv. 33, 3, 322--373. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Bollobas, B., Das, G., Gunopulos, D., and Mannila, H. 1997. Time-Series similarity problems and well-separated geometric sets. In Proceedings of the 13th Symposium on Computational Geometry. 454--456. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Box, G., Jenkins, G., and Reinsel, G. 1976. Time Series Analysis: Forecasting and Control. Holden-Day, San Francisco. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Brockwell, P. and Davis, R. 2002. Introduction to Time Series and Forecasting. Springer.Google ScholarGoogle Scholar
  35. Brockwell, P. and Davis, R. 2009. Time Series: Theory and Methods. Springer.Google ScholarGoogle Scholar
  36. Buhler, J. and Tompa, M. 2002. Finding motifs using random projections. J. Comput. Biol. 9, 2, 225--242.Google ScholarGoogle ScholarCross RefCross Ref
  37. Burkom, H., Murphy, S., and Shmueli, G. 2007. Automated time series forecasting for biosurveillance. Statist. Medi. 26, 22, 4202--4218.Google ScholarGoogle ScholarCross RefCross Ref
  38. Cai, Y. and Ng, R. 2004. Indexing spatio-temporal trajectories with Chebyshev polynomials. In Proceedings of the ACM SIGMOD International Conference on Management of Data. ACM, 599--610. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Cao, L. and Tay, F. 2009. Feature selection for support vector machines in financial time series forecasting. In Intelligent Data Engineering and Automated Learning. Lecture Notes in Computer Science, vol. 1983. Springer, 41--65. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Chakrabarti, K. and Mehrotra, S. 1999. The hybrid tree: An index structure for high dimensional feature spaces. In Proceedings of the 15th International Conference on Data Engineering. 440--447. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Chan, F., Fu, A., and Yu, C. 2003. Haar wavelets for efficient similarity search of time-series: With and without time warping. IEEE Trans. Knowl. Data Engin. 15, 3, 686--705. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Chan, K. and Fu, A. 1999. Efficient time series matching by wavelets. In Proceedings of the 15th IEEE International Conference on Data Engineering. 126--133. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Chandola, V., Banerjee, A., and Kumar, V. 2009. Anomaly detection: A survey. ACM Comput. Surv. 41, 3, 15. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Chappelier, J. and Grumbach, A. 1996. A Kohonen map for temporal sequences. In Proceedings of the Conference on Neural Networks and Their Applications. 104--110.Google ScholarGoogle Scholar
  45. Chen, L. and Ng, R. 2004. On the marriage of Lp-norms and edit distance. In Proceedings of the 30th International Conference on Very Large Data Bases. 792--803. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Chen, L., Ozsu, M., and Oria, V. 2005. Robust and fast similarity search for moving object trajectories. In Proceedings of the ACM SIGMOD International Conference on Management of Data. ACM, 491--502. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Chen, Q., Chen, L., Lian, X., Liu, Y., and Yu, J. 2007a. Indexable PLA for efficient similarity search. In Proceedings of the 33rd International Conference on Very Large Data Bases. VLDB Endowment, 435--446. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Chen, X., Kwong, S., and Li, M. 2000. A compression algorithm for DNA sequences and its applications in genome comparison. In Proceedings of the 4th Annual International Conference on Computational Molecular Biology. 107. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Chen, X. and Zhan, Y. 2008. Multi-Scale anomaly detection algorithm based on infrequent pattern of time series. J. Comput. Appl. Math. 214, 1, 227--237. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Chen, Y., Nascimento, M., Ooi, B., and Tung, A. 2007b. Spade: On shape-based pattern detection in streaming time series. In Proceedings of the IEEE 23rd International Conference on Data Engineering. 786--795.Google ScholarGoogle Scholar
  51. Chhieng, V. and Wong, R. 2010. Adaptive distance measurement for time series databases. In Lecture Notes in Computer Science, vol. 4443. Springer, 598--610. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Chiu, B., Keogh, E., and Lonardi, S. 2003. Probabilistic discovery of time series motifs. In Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 493--498. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. Chuah, M. and Fu, F. 2007. ECG anomaly detection via time series analysis. In Frontiers of High Performance Computing and Networking ISPA 07 Workshops. Springer, 123--135. Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Corduas, M. and Piccolo, D. 2008. Time series clustering and classification by the autoregressive metric. Comput. Statist. Data Anal. 52, 4, 1860--1872. Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. Cormode, G., Muthukrishnan, S., and Zhuang, W. 2007. Conquering the divide: Continuous clustering of distributed data streams. In Proceedings of the IEEE 23rd International Conference on Data Engineering. 1036--1045.Google ScholarGoogle Scholar
  56. Costa Santos, C., Bernardes, J., Vitanyi, P., and Antunes, L. 2006. Clustering fetal heart rate tracings by compression. In Proceedings of the 19th International Symposium on Computer-Based Medical Systems. 685--690. Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. Das, G., Gunopulos, D., and Mannila, H. 1997. Finding similar time series. In Proceedings of the 1st European Symposium on Principles of Data Mining and Knowledge Discovery (PKDD'97). Springer, 88--100. Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. Degli Esposti, M., Farinelli, C., and Menconi, G. 2009. Sequence distance via parsing complexity: Heartbeat signals. Chaos, Sol. Fractals 39, 3, 991--999.Google ScholarGoogle ScholarCross RefCross Ref
  59. Deng, K., Moore, A., and Nechyba, M. 1997. Learning to recognize time series: Combining ARMA models with memory-based learning. In Proceedings of the IEEE International Symposium on Computational Intelligence in Robotics and Automation. 246--251. Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. Denton, A. 2005. Kernel-Density-Based clustering of time series subsequences using a continuous random-walk noise model. In Proceedings of the 5th IEEE International Conference on Data Mining. 122--129. Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. Ding, H., Trajcevski, G., Scheuermann, P., Wang, X., and Keogh, E. 2008. Querying and mining of time series data: Experimental comparison of representations and distance measures. Proc. VLDB Endowm. 1, 2, 1542--1552. Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. Domingos, P. and Hulten, G. 2000. Mining high-speed data streams. In Proceedings of the 6th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 71--80. Google ScholarGoogle ScholarDigital LibraryDigital Library
  63. Dong, G., Han, J., Lakshmanan, L., Pei, J., Wang, H., and Yu, P. 2003. Online mining of changes from data streams: Research problems and preliminary results. In Proceedings of the ACM SIGMOD Workshop on Management and Processing of Data Streams.Google ScholarGoogle Scholar
  64. Faloutsos, C. and Megalooikonomou, V. 2007. On data mining, compression, and kolmogorov complexity. Data Min. Knowl. Discov. 15, 1, 3--20. Google ScholarGoogle ScholarDigital LibraryDigital Library
  65. Faloutsos, C., Ranganathan, M., and Manolopulos, Y. 1994. Fast subsequence matching in time-series databases. SIGMOD Rec. 23, 419--429. Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. Ferreira, P., Azevedo, P., Silva, C., and Brito, R. 2006. Mining approximate motifs in time series. In Lecture Notes in Computer Science, vol. 4265. Springer, 89--101. Google ScholarGoogle ScholarDigital LibraryDigital Library
  67. Flanagan, J. 2003. A non-parametric approach to unsupervised learning and clustering of symbol strings and sequences. In Proceedings of the 4th Workshop on Self-Organizing Maps (WSOM03). 128--133.Google ScholarGoogle Scholar
  68. Frentzos, E., Gratsias, K., and Theodoridis, Y. 2007. Index-Based most similar trajectory search. In Proceedings of the IEEE 23rd International Conference on Data Engineering. 816--825.Google ScholarGoogle Scholar
  69. Fröhwirth-Schnatter, S. and Kaufmann, S. 2008. Model-Based clustering of multiple time series. J. Bus. Econ. Statist. 26, 1, 78--89.Google ScholarGoogle ScholarCross RefCross Ref
  70. Fu, A., Keogh, E., Lau, L., Ratanamahatana, C., and Wong, R. 2008. Scaling and time warping in time series querying. The VLDB J. Int. J. Very Large Data Bases 17, 4, 921. Google ScholarGoogle ScholarDigital LibraryDigital Library
  71. Fuchs, E., Gruber, T., Pree, H., and Sick, B. 2010. Temporal data mining using shape space representations of time series. Neurocomput. 74, 1-3, 379--393. Google ScholarGoogle ScholarDigital LibraryDigital Library
  72. Gaber, M., Zaslavsky, A., and Krishnaswamy, S. 2005. Mining data streams: A review. ACM SIGMOD Rec. 34, 2, 18--26. Google ScholarGoogle ScholarDigital LibraryDigital Library
  73. Gaffney, S. and Smyth, P. 1999. Trajectory clustering with mixtures of regression models. In Proceedings of the 5th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 63--72. Google ScholarGoogle ScholarDigital LibraryDigital Library
  74. Ge, X. and Smyth, P. 2000. Deformable Markov model templates for time-series pattern matching. In Proceedings of the 6th ACM International Conference on Knowledge Discovery and Data Mining. 81--90. Google ScholarGoogle ScholarDigital LibraryDigital Library
  75. Geurts, P. 2001. Pattern extraction for time series classification. In Proceedings of the 5th European Conference on Principles of Data Mining and Knowledge Discovery. 115--127. Google ScholarGoogle ScholarDigital LibraryDigital Library
  76. Golab, L. and Ozsu, M. 2003. Issues in data stream management. ACM SIGMOD Rec. 32, 2, 5--14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  77. Goldin, D. and Kanellakis, P. 1995. On similarity queries for time-series data: Constraint specification and implementation. In Proceedings of the Principles and Practice of Constraint Programming (CP95). Springer, 137--153. Google ScholarGoogle ScholarDigital LibraryDigital Library
  78. Goldin, D., Millstein, T., and Kutlu, A. 2004. Bounded similarity querying for time-series data. Info. Comput. 194, 2, 203--241. Google ScholarGoogle ScholarDigital LibraryDigital Library
  79. Gullo, F., Ponti, G., Tagarelli, A., and Greco, S. 2009. A time series representation model for accurate and fast similarity detection. Pattern Recogn. 42, 11, 2998--3014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  80. Gupta, S., Ray, A., and Keller, E. 2007. Symbolic time series analysis of ultrasonic data for early detection of fatigue damage. Mechan. Syst. Signal Process. 21, 2, 866--884.Google ScholarGoogle ScholarCross RefCross Ref
  81. Gusfield, D. 1997. Algorithms on Strings, Trees, and Sequences: Computer Science and Computational Biology. Cambridge University Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  82. Han, J. and Kamber, M. 2006. Data Mining: Concepts and Techniques. Morgan Kaufmann. Google ScholarGoogle ScholarDigital LibraryDigital Library
  83. Harris, R. and Sollis, R. 2003. Applied Time Series Modelling and Forecasting. J. Wiley.Google ScholarGoogle Scholar
  84. Hebrail, G. and Hugueney, B. 2000. Symbolic representation of long time-series. In Symbolic Data Analysis at the 4th European Conference on Principles of Data Mining and Knowledge Discovery. 56--65.Google ScholarGoogle Scholar
  85. Hellerstein, J., Koutsoupias, E., and Papadimitriou, C. 1997. On the analysis of indexing schemes. In Proceedings of the 16th ACM Symposium on Principles of Database Systems. 249--256. Google ScholarGoogle ScholarDigital LibraryDigital Library
  86. Herrera, L., Pomares, H., Rojas, I., Guillén, A., Prieto, A., and Valenzuela, O. 2007. Recursive prediction for long term time series forecasting using advanced models. Neurocomput. 70, 16-18, 2870--2880. Google ScholarGoogle ScholarDigital LibraryDigital Library
  87. Himberg, J., Korpiaho, K., Tikanmaki, J., and Toivonen, H. 2001a. Time series segmentation for context recognition in mobile devices. In Proceedings of the 1st IEEE International Conference on Data Mining. 203--210. Google ScholarGoogle ScholarDigital LibraryDigital Library
  88. Himberg, J., Mantyjarvi, J., and Korpipaa, P. 2001b. Using PCA and ICA for exploratory data analysis in situation awareness. In Proceedings of the International Conference on Multisensor Fusion and Integration for Intelligent Systems. 127--131.Google ScholarGoogle Scholar
  89. Huang, Y. and Yu, P. 1999. Adaptive query processing for time-series data. In Proceedings of the 5th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 282--286. Google ScholarGoogle ScholarDigital LibraryDigital Library
  90. Hulten, G., Spencer, L., and Domingos, P. 2001. Mining time-changing data streams. In Proceedings of the 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 97--106. Google ScholarGoogle ScholarDigital LibraryDigital Library
  91. Indyk, P., Koudas, N., and Muthukrishnan, S. 2000. Identifying representative trends in massive time series data sets using sketches. In Proceedings of the 26th International Conference on Very Large Data Bases. Morgan Kaufmann Publishers Inc., 363--372. Google ScholarGoogle ScholarDigital LibraryDigital Library
  92. Janacek, G., Bagnall, A., and Powell, M. 2005. A likelihood ratio distance measure for the similarity between the Fourier transform of time series. In Lecture Notes in Computer Science, vol. 3518. Springer, 737--743. Google ScholarGoogle ScholarDigital LibraryDigital Library
  93. Jeng, S. and Huang, Y. 2008. Time series classification based on spectral analysis. Comm. Statisti. Simul. Comput. 37, 1, 132--142.Google ScholarGoogle ScholarCross RefCross Ref
  94. Kalpakis, K., Gada, D., and Puttagunta, V. 2001. Distance measures for effective clustering of ARIMA time-series. In Proceedings of the IEEE International Conference on Data Mining. 273--280. Google ScholarGoogle ScholarDigital LibraryDigital Library
  95. Kauppinen, H., Seppanen, T., and Pietikainen, M. 1995. An experimental comparison of autoregressive and Fourier-based descriptors in 2D shape classification. IEEE Trans. Pattern Anal. Mach. Intell. 17, 2, 201--207. Google ScholarGoogle ScholarDigital LibraryDigital Library
  96. Kehagias, A. 2004. A hidden Markov model segmentation procedure for hydrological and environmental time series. Stochas. Environ. Res. Risk Assessm. 18, 2, 117--130.Google ScholarGoogle ScholarCross RefCross Ref
  97. Keogh, E., Chakrabarti, K., and Pazzani, M. 2001a. Locally adaptive dimensionality reduction for indexing large time series databases. In Proceedings of ACM Conference on Management of Data. 151--162. Google ScholarGoogle ScholarDigital LibraryDigital Library
  98. Keogh, E., Chakrabarti, K., Pazzani, M., and Mehrotra, S. 2001b. Dimensionality reduction for fast similarity search in large time series databases. Knowl. Info. Syst. 3, 3, 263--286.Google ScholarGoogle ScholarCross RefCross Ref
  99. Keogh, E., Chu, S., Hart, D., and Pazzani, M. 2003a. Segmenting time series: A survey and novel approach. Data Min. Time Series Databases, 1--21.Google ScholarGoogle Scholar
  100. Keogh, E. and Kasetty, S. 2002. On the need for time series data mining benchmarks : A survey and empirical demonstration. In Proceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 102--111. Google ScholarGoogle ScholarDigital LibraryDigital Library
  101. Keogh, E. and Kasetty, S. 2003. On the need for time series data mining benchmarks: A survey and empirical demonstration. Data Min. Knowl. Discov. 7, 4, 349--371. Google ScholarGoogle ScholarDigital LibraryDigital Library
  102. Keogh, E., Lin, J., Lee, S., and Herle, H. 2007. Finding the most unusual time series subsequence: Algorithms and applications. Knowl. Inf. Syst. 11, 1, 1--27. Google ScholarGoogle ScholarDigital LibraryDigital Library
  103. Keogh, E., Lin, J., and Truppel, W. 2003b. Clustering of time series subsequences is meaningless: Implications for previous and future research. In Proceedings of the 3rd IEEE International Conference on Data Mining. 115--122. Google ScholarGoogle ScholarDigital LibraryDigital Library
  104. Keogh, E., Lonardi, S., and Ratanamahatana, C. 2004. Towards parameter-free data mining. In Proceedings of 10th ACM International Conference on Knowledge Discovery and Data Mining. 206--215. Google ScholarGoogle ScholarDigital LibraryDigital Library
  105. Keogh, E. and Pazzani, M. 1998. An enhanced representation of time series which allows fast and accurate classification, clustering and relevance feedback. In Proceedings of the 4th International Conference of Knowledge Discovery and Data Mining. AAAI Press, 239--241.Google ScholarGoogle ScholarDigital LibraryDigital Library
  106. Keogh, E. and Ratanamahatana, C. 2005. Exact indexing of dynamic time warping. Knowl. Info. Syst. 7, 3, 358--386. Google ScholarGoogle ScholarDigital LibraryDigital Library
  107. Kerr, G., Ruskin, H., Crane, M., and Doolan, P. 2008. Techniques for clustering gene expression data. Comput. Biol. Med. 38, 3, 283--293. Google ScholarGoogle ScholarDigital LibraryDigital Library
  108. Kim, S., Park, S., and Chu, W. 2001. An index-based approach for similarity search supporting time warping in large sequence databases. In Proceedings of the 17th International Conference on Data Engineering. IEEE Computer Society, 607--614. Google ScholarGoogle ScholarDigital LibraryDigital Library
  109. Kontaki, M., Papadopoulos, A., and Manolopoulos, Y. 2007. Adaptive similarity search in streaming time series with sliding windows. Data Knowl. Engin. 63, 2, 478--502. Google ScholarGoogle ScholarDigital LibraryDigital Library
  110. Kontaki, M., Papadopoulos, A., and Manolopoulos, Y. 2009. Similarity search in time series. In Handbook of Research on Innovations in Database Technologies and Applications. 288--299.Google ScholarGoogle Scholar
  111. Korn, F., Jagadish, H., and Faloutsos, C. 1997. Efficiently supporting ad hoc queries in large datasets of time sequences. In Proceedings of the ACM SIGMOD International Conference on Management of Data. ACM, 289--300. Google ScholarGoogle ScholarDigital LibraryDigital Library
  112. Koskela, T. 2003. Neural network methods in analysing and modelling time varying processes. Ph.D. thesis, Helsinki University of Technology Laboratory of Computational Engineering.Google ScholarGoogle Scholar
  113. Kumar, N., Lolla, N., Keogh, E., Lonardi, S., Ratanamahatana, C., and Wei, L. 2005. Time Series bitmaps: A practical visualization tool for working with large time-series databases. In Proceedings of the SIAM Data Mining Conference. 531--535.Google ScholarGoogle Scholar
  114. Latecki, L., Megalooikonomou, V., Wang, Q., Lakaemper, R., Ratanamahatana, C., and Keogh, E. 2005. Elastic partial matching of time series. Knowl. Discov. Databases, 577--584. Google ScholarGoogle ScholarDigital LibraryDigital Library
  115. Latecki, L., Wang, Q., Koknar-Tezel, S., and Megalooikonomou, V. 2007. Optimal subsequence bijection. In Proceedings of the IEEE International Conference on Data Mining (ICDM). 565--570. Google ScholarGoogle ScholarDigital LibraryDigital Library
  116. Law, M. and Kwok, J. 2000. Rival penalized competitive learning for model-based sequence clustering. In Proceedings of the 15th International Conference on Pattern Recognition. Vol. 2. 2186--2195.Google ScholarGoogle Scholar
  117. Li, C., Yu, P., and Castelli, V. 1998. MALM: A framework for mining sequence database at multiple abstraction levels. In Proceedings of the 7th International Conference on Information and Knowledge Management. ACM, 267--272. Google ScholarGoogle ScholarDigital LibraryDigital Library
  118. Lian, X. and Chen, L. 2007. Efficient similarity search over future stream time series. IEEE Trans. Knowl. Data Engin. 20, 1, 40--54. Google ScholarGoogle ScholarDigital LibraryDigital Library
  119. Lian, X., Chen, L., and Wang, B. 2010. Approximate similarity search over multiple stream time series. In Lecture Notes in Computer Science, vol. 4443. Springer, 962--968. Google ScholarGoogle ScholarDigital LibraryDigital Library
  120. Liao, T. 2005. Clustering of time series data--A survey. Pattern Recogn. 38, 11, 1857--1874. Google ScholarGoogle ScholarDigital LibraryDigital Library
  121. Liew, A., Leung, S., and Lau, W. 2000. Fuzzy image clustering incorporating spatial continuity. IEEE Proc. Vis. Image Signal Process. 147, 2, 185--192.Google ScholarGoogle ScholarCross RefCross Ref
  122. Lin, J. and Keogh, E. 2005. Clustering of time-series subsequences is meaningless: Implications for previous and future research. Knowl. Info. Syst 8, 2, 154--177. Google ScholarGoogle ScholarDigital LibraryDigital Library
  123. Lin, J., Keogh, E., Lonardi, S., and Chiu, B. 2003. A symbolic representation of time series, with implications for streaming algorithms. In Proceedings of the 8th ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery. ACM New York, 2--11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  124. Lin, J., Keogh, E., Lonardi, S., Lankford, J., and Nystrom, D. 2004. Visually mining and monitoring massive time series. In Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 460--469. Google ScholarGoogle ScholarDigital LibraryDigital Library
  125. Lin, J. and Li, Y. 2009. Finding structural similarity in time series data using bag-of-patterns representation. In Proceedings of the 21st International Conference on Scientific and Statistical Database Management. Springer, 461--477. Google ScholarGoogle ScholarDigital LibraryDigital Library
  126. Lin, T., Kaminski, N., and Bar-Joseph, Z. 2008. Alignment and classification of time series gene expression in clinical studies. Bioinf. 24, 13, 147--155. Google ScholarGoogle ScholarDigital LibraryDigital Library
  127. Liu, Z., Yu, J., Lin, X., Lu, H., and Wang, W. 2005. Locating Motifs in Time Series Data. Springer, 343--353. Google ScholarGoogle ScholarDigital LibraryDigital Library
  128. Lotte, F., Congedo, M., Lécuyer, A., Lamarche, F., and Arnaldi, B. 2007. A review of classification algorithms for EEG-based brain--computer interfaces. J. Neural Engin. 4, 1--13.Google ScholarGoogle ScholarCross RefCross Ref
  129. Lowitz, T., Ebert, M., Meyer, W., and Hensel, B. 2009. Hidden markov models for classification of heart rate variability in RR time series. In World Congress on Medical Physics and Biomedical Engineering. Springer, 1980--1983.Google ScholarGoogle Scholar
  130. Ma, J. and Perkins, S. 2003. Online novelty detection on temporal sequences. In Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 613--618. Google ScholarGoogle ScholarDigital LibraryDigital Library
  131. Mannila, H. and Seppnen, J. 2001. Recognizing similar situations from event sequences. In Proceedings of the 1st SIAM Conference on Data Mining. 1--16.Google ScholarGoogle Scholar
  132. Marteau, P. 2008. Time warp edit distance with stiffness adjustment for time series matching. IEEE Trans. Pattern Anal. Mach. Intell. 31, 2, 306--318. Google ScholarGoogle ScholarDigital LibraryDigital Library
  133. Megalooikonomou, V., Li, G., and Wang, Q. 2004. A dimensionality reduction technique for efficient similarity analysis of time series databases. In Proceedings of the 13th ACM International Conference on Information and Knowledge Management. ACM, 160--161. Google ScholarGoogle ScholarDigital LibraryDigital Library
  134. Megalooikonomou, V., Wang, Q., Li, G., and Faloutsos, C. 2005. A multiresolution symbolic representation of time series. In Proceedings of the 21st International Conference on Data Engineering. 668--679. Google ScholarGoogle ScholarDigital LibraryDigital Library
  135. Mohammad, Y. and Nishida, T. 2009. Constrained motif discovery in time series. New Gener. Comput. 27, 4, 319--346.Google ScholarGoogle ScholarCross RefCross Ref
  136. Morse, M. and Patel, J. 2007. An efficient and accurate method for evaluating time series similarity. In Proceedings of the ACM International Conference on Management of Data. 569--580. Google ScholarGoogle ScholarDigital LibraryDigital Library
  137. Mueen, A., Keogh, E., Zhu, Q., Cash, S., and Westover, B. 2009. Exact discovery of time series motifs. In Proceedings of the SIAM International Conference on Data Mining (SDM). 473--484.Google ScholarGoogle Scholar
  138. Muhammad Fuad, M. and Marteau, P. 2008. Extending the edit distance using frequencies of common characters. In Proceedings of the 19th International Conference on Database and Expert Systems Applications. Springer, 150--157. Google ScholarGoogle ScholarDigital LibraryDigital Library
  139. Nanopoulos, A., Alcock, R., and Manolopoulos, Y. 2001. Feature-Based classification of time-series data. In Information Processing and Technology. 49--61. Google ScholarGoogle ScholarDigital LibraryDigital Library
  140. Ogras, Y. and Ferhatosmanoglu, H. 2006. Online summarization of dynamic time series data. The VLDB J. The Int. J. Very Large Data Bases 15, 1, 84--98. Google ScholarGoogle ScholarDigital LibraryDigital Library
  141. Otu, H. and Sayood, K. 2003. A new sequence distance measure for phylogenetic tree construction. Bioinf. 19, 16, 2122--2130.Google ScholarGoogle ScholarCross RefCross Ref
  142. Ouyang, R., Ren, L., Cheng, W., and Zhou, C. 2010. Similarity search and pattern discovery in hydrological time series data mining. Hydrol. Process. 24, 9, 1198--1210.Google ScholarGoogle ScholarCross RefCross Ref
  143. Palpanas, T., Keogh, E., Zordan, V., Gunopulos, D., and Cardle, M. 2004a. Indexing large human-motion databases. In Proceedings of the 13th International Conference on Very Large Data Bases. 780--791. Google ScholarGoogle ScholarDigital LibraryDigital Library
  144. Palpanas, T., Vlachos, M., Keogh, E., and Gunopulos, D. 2008. Streaming time series summarization using user-defined amnesic functions. IEEE Trans. Knowl. Data Engin. 20, 7, 992--1006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  145. Palpanas, T., Vlachos, M., Keogh, E., Gunopulos, D., and Truppel, W. 2004b. Online amnesic approximation of streaming time series. In Proceedings of the 20th International Conference on Data Engineering. 338--349. Google ScholarGoogle ScholarDigital LibraryDigital Library
  146. Panuccio, A., Bicego, M., and Murino, V. 2002. A hidden Markov model-based approach to sequential data clustering. In Lecture Notes in Computer Science, vol. 2396. Springer, 734--743. Google ScholarGoogle ScholarDigital LibraryDigital Library
  147. Papadimitriou, S., Sun, J., and Yu, P. 2006. Local correlation tracking in time series. In Proceedings of the 6th International Conference on Data Mining. 456--465. Google ScholarGoogle ScholarDigital LibraryDigital Library
  148. Papadimitriou, S. and Yu, P. 2006. Optimal multi-scale patterns in time series streams. In Proceedings of the ACM SIGMOD International Conference on Management of Data. 647--658. Google ScholarGoogle ScholarDigital LibraryDigital Library
  149. Park, S., Chu, W., Yoon, J., and Hsu, C. 2000. Efficient searches for similar subsequences of different lengths in sequence databases. In Proceedings of the 16th International Conference on Data Engineering. 23--32. Google ScholarGoogle ScholarDigital LibraryDigital Library
  150. Park, S., Lee, D., and Chu, W. 1999. Fast retrieval of similar subsequences in long sequence databases. In Proceedings of the 3rd IEEE Knowledge and Data Engineering Exchange Workshop. 60--67. Google ScholarGoogle ScholarDigital LibraryDigital Library
  151. Patel, P., Keogh, E., Lin, J., and Lonardi, S. 2002. Mining motifs in massive time series databases. In Proceedings of IEEE International Conference on Data Mining (ICDM02). 370--377. Google ScholarGoogle ScholarDigital LibraryDigital Library
  152. Perng, C., Wang, H., Zhang, S., and Parker, D. 2000. Landmarks: A new model for similarity-based pattern querying in time series databases. In Proceedings of the 16th International Conference on Data Engineering. 33--42. Google ScholarGoogle ScholarDigital LibraryDigital Library
  153. Pesaran, M., Pettenuzzo, D., and Timmermann, A. 2006. Forecasting time series subject to multiple structural breaks. Rev. Econ. Studies 73, 4, 1057--1084.Google ScholarGoogle ScholarCross RefCross Ref
  154. Popivanov, I. and Miller, R. 2002. Similarity search over time-series data using wavelets. In Proceedings of the International Conference on Data Engineering. 212--224. Google ScholarGoogle ScholarDigital LibraryDigital Library
  155. Povinelli, R., Johnson, M., Lindgren, A., and Ye, J. 2004. Time series classification using Gaussian mixture models of reconstructed phase spaces. IEEE Trans. Knowl. Data Engin. 16, 6, 779--783. Google ScholarGoogle ScholarDigital LibraryDigital Library
  156. Rafiei, D. and Mendelzon, A. 1998. Efficient retrieval of similar time sequences using DFT. In Proceedings of the 5th International Conference of Foundations of Data Organization and Algorithms. 249--257.Google ScholarGoogle Scholar
  157. Ratanamahatana, C. and Keogh, E. 2004a. Everything you know about dynamic time warping is wrong. In Proceedings of the 3rd Workshop on Mining Temporal and Sequential Data. 1--11.Google ScholarGoogle Scholar
  158. Ratanamahatana, C. and Keogh, E. 2004b. Making time-series classification more accurate using learned constraints. In Proceedings of SIAM International Conference on Data Mining. 11--22.Google ScholarGoogle Scholar
  159. Ratanamahatana, C., Keogh, E., Bagnall, A., and Lonardi, S. 2005. A novel bit level time series representation with implication of similarity search and clustering. Adv. Knowl. Discov. Data Min. 771--777. Google ScholarGoogle ScholarDigital LibraryDigital Library
  160. Ratanamahatana, C. and Wanichsan, D. 2008. Stopping criterion selection for efficient semi-supervised time series classification. Studies Comput. Intell. 149, 1--14.Google ScholarGoogle Scholar
  161. Ravi Kanth, K., Agrawal, D., and Singh, A. 1998. Dimensionality reduction for similarity searching in dynamic databases. ACM SIGMOD Rec. 27, 2, 166--176. Google ScholarGoogle ScholarDigital LibraryDigital Library
  162. Reeves, G., Liu, J., Nath, S., and Zhao, F. 2009. Managing massive time series streams with multi-scale compressed trickles. Proc. VLDB Endow. 2, 1, 97--108. Google ScholarGoogle ScholarDigital LibraryDigital Library
  163. Reinert, G., Schbath, S., and Waterman, M. 2000. Probabilistic and statistical properties of words: An overview. J. Comput. Biol. 7, 1-2, 1--46.Google ScholarGoogle ScholarCross RefCross Ref
  164. Rodriguez, J. and Kuncheva, L. 2007. Time series classification: Decision forests and SVM on interval and DTW features. In Proceedings of the Workshop on Time Series Classification, 13th International Conference on Knowledge Discovery and Data Mining.Google ScholarGoogle Scholar
  165. Sakurai, Y., Yoshikawa, M., and Faloutsos, C. 2005. FTW: Fast similarity search under the time warping distance. In Proceedings of the 24th ACM Symposium on Principles of Database Systems. 326--337. Google ScholarGoogle ScholarDigital LibraryDigital Library
  166. Sakurai, Y., Yoshikawa, M., Uemura, S., and Kojima, H. 2000. The A-tree: An index structure for high-dimensional spaces using relative approximation. In Proceedings of the 26th International Conference on Very Large Data Bases. 516--526. Google ScholarGoogle ScholarDigital LibraryDigital Library
  167. Salvador, S. and Chan, P. 2007. Toward accurate dynamic time warping in linear time and space. Intell. Data Anal. 11, 5, 561--580. Google ScholarGoogle ScholarDigital LibraryDigital Library
  168. Salvador, S., Chan, P., and Brodie, J. 2004. Learning states and rules for time series anomaly detection. In Proceedings of the 17th International FLAIRS Conference. 300--305.Google ScholarGoogle Scholar
  169. Sebastian, T., Klein, P., and Kimia, B. 2003. On aligning curves. IEEE Trans. Pattern Anal. Mach. Intell. 25, 1, 116--125. Google ScholarGoogle ScholarDigital LibraryDigital Library
  170. Sebastiani, P., Ramoni, M., Cohen, P., Warwick, J., and Davis, J. 1999. Discovering dynamics using Bayesian clustering. In Lecture Notes in Computer Science, vol. 1642. Springer, 199--209. Google ScholarGoogle ScholarDigital LibraryDigital Library
  171. Sfetsos, A. and Siriopoulos, C. 2004. Time series forecasting with a hybrid clustering scheme and pattern recognition. IEEE Trans. Syst. Man Cybernet. A 34, 3, 399--405. Google ScholarGoogle ScholarDigital LibraryDigital Library
  172. Shasha, D. and Zhu, Y. 2004. High Performance Discovery in Time Series: Techniques and Case Studies. Springer. Google ScholarGoogle ScholarDigital LibraryDigital Library
  173. Shatkay, H. and Zdonik, S. 1996. Approximate queries and representations for large data sequences. In Proceedings of the 12th International Conference on Data Engineering. 536--545. Google ScholarGoogle ScholarDigital LibraryDigital Library
  174. Shieh, J. and Keogh, E. 2008. ISAX: Indexing and mining terabyte sized time series. In Proceeding of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 623--631. Google ScholarGoogle ScholarDigital LibraryDigital Library
  175. Smyth, P. 1997. Clustering sequences with hidden Markov models. Adv. Neural Info. Process. Syst. 648--654.Google ScholarGoogle Scholar
  176. Song, H. and Li, G. 2008. Tourism demand modelling and forecasting--A review of recent research. Tour. Manag. 29, 2, 203--220.Google ScholarGoogle ScholarCross RefCross Ref
  177. Sorjamaa, A., Hao, J., Reyhani, N., Ji, Y., and Lendasse, A. 2007. Methodology for long-term prediction of time series. Neurocomput. 70, 16-18, 2861--2869. Google ScholarGoogle ScholarDigital LibraryDigital Library
  178. Srisai, D. and Ratanamahatana, C. 2009. Efficient time series classification under template matching using time warping alignment. In Proceedings of the 4th International Conference on Computer Sciences and Convergence Information Technology. IEEE, 685--690. Google ScholarGoogle ScholarDigital LibraryDigital Library
  179. Stiefmeier, T., Roggen, D., and Troster, G. 2007. Gestures are strings: Efficient online gesture spotting and classification using string matching. In Proceedings of the ICST 2nd International Conference on Body Area Networks. 1--8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  180. Struzik, Z., Siebes, A., and CWI, A. 1999. Measuring time series similarity through large singular features revealed with wavelet transformation. In Proceedings of the 10th International Workshop on Database and Expert Systems Applications. 162--166. Google ScholarGoogle ScholarDigital LibraryDigital Library
  181. Subasi, A. 2007. EEG signal classification using wavelet feature extraction and a mixture of expert model. Expert Syst. Appl. 32, 4, 1084--1093. Google ScholarGoogle ScholarDigital LibraryDigital Library
  182. Tang, H. and Liao, S. 2008. Discovering original motifs with different lengths from time series. Knowl.-Based Syst. 21, 7, 666--671. Google ScholarGoogle ScholarDigital LibraryDigital Library
  183. Tsay, R. 2005. Analysis of Financial Time Series. Wiley-Interscience.Google ScholarGoogle Scholar
  184. Vasko, K. and Toivonen, H. 2002. Estimating the number of segments in time series data using permutation tests. In Proceedings of the IEEE International Conference on Data Mining. 466--473. Google ScholarGoogle ScholarDigital LibraryDigital Library
  185. Vlachos, M., Gunopoulos, D., and Kollios, G. 2002. Discovering similar multidimensional trajectories. In Proceedings of the 18th International Conference on Data Engineering. IEEE Computer Society, 673--684. Google ScholarGoogle ScholarDigital LibraryDigital Library
  186. Vlachos, M., Gunopulos, D., and Das, G. 2004. Indexing time series under conditions of noise. In Data Mining in Time Series Databases. 67--100.Google ScholarGoogle Scholar
  187. Vlachos, M., Hadjieleftheriou, M., Gunopulos, D., and Keogh, E. 2006. Indexing multidimensional time series. The VLDB J. 15, 1, 1--20. Google ScholarGoogle ScholarDigital LibraryDigital Library
  188. Vlachos, M., Lin, J., Keogh, E., and Gunopulos, D. 2003. A wavelet-based anytime algorithm for k-means clustering of time series. In Proceedings of the Workshop on Clustering High Dimensionality Data and Its Applications. 23--30.Google ScholarGoogle Scholar
  189. Vlachos, M., Yu, P., and Castelli, V. 2005. On periodicity detection and structural periodic similarity. In Proceedings of the SIAM International Conference on Data Mining. 449--460.Google ScholarGoogle Scholar
  190. Wagner, N., Michalewicz, Z., Khouja, M., and McGregor, R. 2007. Time series forecasting for dynamic environments: The DyFor genetic program model. IEEE Trans. Evolut. Comput. 11, 4, 433--452. Google ScholarGoogle ScholarDigital LibraryDigital Library
  191. Weigend, A. and Gershenfeld, N. 1994. Time Series Prediction: Forecasting the Future and Understanding the Past. Addison Wesley.Google ScholarGoogle Scholar
  192. Weiss, G. 2004. Mining with rarity: A unifying framework. ACM SIGKDD Explor. Newslett. 6, 1, 7--19. Google ScholarGoogle ScholarDigital LibraryDigital Library
  193. Xi, X., Keogh, E., Shelton, C., Wei, L., and Ratanamahatana, C. 2006. Fast time series classification using numerosity reduction. In Proceedings of the 23rd International Conference on Machine Learning. 1040. Google ScholarGoogle ScholarDigital LibraryDigital Library
  194. Xi, X., Keogh, E., Wei, L., and Mafra-neto, A. 2007. Finding motifs in database of shapes. In Proceedings of SIAM International Conference on Data Mining. 249--260.Google ScholarGoogle Scholar
  195. Xie, J. and Yan, W. 2007. Pattern-Based characterization of time series. Int. J. Info. Syst. Sci. 3, 3, 479--491.Google ScholarGoogle Scholar
  196. Xiong, Y. and Yeung, D. 2004. Time series clustering with ARMA mixtures. Pattern Recogn. 37, 8, 1675--1689.Google ScholarGoogle ScholarCross RefCross Ref
  197. Yadav, R., Kalra, P., and John, J. 2007. Time series prediction with single multiplicative neuron model. Appl. Soft Comput. 7, 4, 1157--1163. Google ScholarGoogle ScholarDigital LibraryDigital Library
  198. Yankov, D., Keogh, E., Medina, J., Chiu, B., and Zordan, V. 2007. Detecting time series motifs under uniform scaling. In Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 844--853. Google ScholarGoogle ScholarDigital LibraryDigital Library
  199. Yankov, D., Keogh, E., and Rebbapragada, U. 2008. Disk aware discord discovery: Finding unusual time series in terabyte sized datasets. Knowl. Info. Syst. 17, 2, 241--262. Google ScholarGoogle ScholarDigital LibraryDigital Library
  200. Ye, D., Wang, X., Keogh, E., and Mafra-Neto, A. 2009. Autocannibalistic and anyspace indexing algorithms with applications to sensor data mining. In Proceedings of the SIAM International Conference on Data Mining (SDM 09). 85--96.Google ScholarGoogle Scholar
  201. Ye, L. and Keogh, E. 2009. Time series shapelets: A new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 947--956. Google ScholarGoogle ScholarDigital LibraryDigital Library
  202. Yi, B. and Faloutsos, C. 2000. Fast time sequence indexing for arbitrary Lp norms. In Proceedings of the 26th International Conference on Very Large Data Bases. 385--394. Google ScholarGoogle ScholarDigital LibraryDigital Library
  203. Yi, B., Jagadish, H., and Faloutsos, C. 1998. Efficient retrieval of similar time sequences under time warping. In Proceedings of the 14th International Conference on Data Engineering. 201--208. Google ScholarGoogle ScholarDigital LibraryDigital Library
  204. Yoon, H., Yang, K., and Shahabi, C. 2005. Feature subset selection and feature ranking for multivariate time series. IEEE Trans. Knowl. Data Engin., 1186--1198. Google ScholarGoogle ScholarDigital LibraryDigital Library
  205. Ypma, A. and Duin, R. 1997. Novelty detection using self-organizing maps. Progress Connect.-Based Info. Syst. 2, 1322--1325.Google ScholarGoogle Scholar
  206. Zhan, Y., Chen, X., and Xu, R. 2007. Outlier detection algorithm based on pattern representation of time series. Appl. Res. Comput. 24, 11, 96--99.Google ScholarGoogle Scholar
  207. Zhang, X., Wu, J., Yang, X., Ou, H., and Lv, T. 2009. A novel pattern extraction method for time series classification. Optimiz. Engin. 10, 2, 253--271.Google ScholarGoogle ScholarCross RefCross Ref
  208. Zhong, S. and Ghosh, J. 2002. HMMs and coupled HMMs for multi-channel EEG classification. In Proceedings of the IEEE International Joint Conference on Neural Networks. 1154--1159.Google ScholarGoogle Scholar
  209. Zhong, S., Khoshgoftaar, T., and Seliya, N. 2007. Clustering-Based network intrusion detection. Int. J. Reliab. Qual. Safety Engin. 14, 2, 169--187.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Time-series data mining

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Computing Surveys
          ACM Computing Surveys  Volume 45, Issue 1
          November 2012
          455 pages
          ISSN:0360-0300
          EISSN:1557-7341
          DOI:10.1145/2379776
          Issue’s Table of Contents

          Copyright © 2012 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 7 December 2012
          • Revised: 1 August 2011
          • Accepted: 1 August 2011
          • Received: 1 January 2011
          Published in csur Volume 45, Issue 1

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article
          • Research
          • Refereed

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader