skip to main content
10.1145/2461328.2461336acmconferencesArticle/Chapter ViewAbstractPublication PagescpsweekConference Proceedingsconference-collections
research-article

Learning nonlinear hybrid systems: from sparse optimization to support vector regression

Published:08 April 2013Publication History

ABSTRACT

This paper deals with the identification of hybrid systems switching between nonlinear subsystems of unknown structure and focuses on the connections with a family of machine learning algorithms known as support vector machines. In particular, we consider a recent approach to nonlinear hybrid system identification based on a convex relaxation of a sparse optimization problem. In this approach, the submodels are iteratively estimated one by one by maximizing the sparsity of the corresponding error vector. We extend this approach in several ways. First, we relax the sparsity condition by introducing robust sparsity, which can be optimized through the minimization of a modified l1-norm or, equivalently, of the ε-insensitive loss function. Then, we show that, depending on the choice of regularizer, the method is equivalent to different forms of support vector regression. More precisely, the submodels can be estimated by iteratively solving a classical support vector regression problem, in which the sparsity of support vectors relates to the sparsity of the error vector in the considered hybrid system identification framework. This allows us to extend theoretical results as well as efficient optimization algorithms from the field of machine learning to the hybrid system framework.

References

  1. L. Bako. Identification of switched linear systems via sparse optimization. Automatica, 47(4):668--677, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. L. Bako, K. Boukharouba, and S. Lecoeuche. An l_0-l_1 norm based optimization procedure for the identification of switched nonlinear systems. In Proc. of the 49th IEEE Int. Conf. on Decision and Control (CDC), pages 4467--4472, 2010.Google ScholarGoogle ScholarCross RefCross Ref
  3. L. Bako, V. L. Le, F. Lauer, and G. Bloch. Identification of MIMO switched state-space models. In Proc. of the American Control Conference (ACC), Washington, DC, USA, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  4. A. Bemporad, A. Garulli, S. Paoletti, and A. Vicino. A bounded-error approach to piecewise affine system identification. IEEE Transactions on Automatic Control, 50(10):1567--1580, 2005.Google ScholarGoogle ScholarCross RefCross Ref
  5. A. Berlinet and C. Thomas-Agnan. Reproducing Kernel Hilbert Spaces in Probability and Statistics. Kluwer Academic Publishers, Boston, 2004.Google ScholarGoogle ScholarCross RefCross Ref
  6. L. Bottou, O. Chapelle, D. DeCoste, and J. Weston, editors. Large Scale Kernel Machines. MIT Press, Cambridge, MA, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. E. Candès, M. Wakin, and S. Boyd. Enhancing sparsity by reweighted l_1 minimization. Journal of Fourier Analysis and Applications, 14(5):877--905, 2008.Google ScholarGoogle ScholarCross RefCross Ref
  8. C. Chang and C. Lin. LibSVM: a library for support vector machines, 2001. Available at http://www.csie.ntu.edu.tw/$\sim$cjlin/libsvm/. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. G. Ferrari-Trecate, M. Muselli, D. Liberati, and M. Morari. A clustering technique for the identification of piecewise affine systems. Automatica, 39(2):205--217, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. L. Gunter and J. Zhu. Computing the solution path for the regularized support vector regression. In Advances in Neural Information Processing Systems 18, pages 483--490, 2006.Google ScholarGoogle Scholar
  11. T. Hastie, S. Rosset, R. Tibshirani, and J. Zhu. The entire regularization path for the support vector machine. Journal of Machine Learning Research, 5:1391--1415, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. T. Joachims. SVM light, 1998. Available at http://svmlight.joachims.org/.Google ScholarGoogle Scholar
  13. A. L. Juloski, S. Weiland, and W. Heemels. A Bayesian approach to identification of hybrid systems. IEEE Transactions on Automatic Control, 50(10):1520--1533, 2005.Google ScholarGoogle ScholarCross RefCross Ref
  14. J. Kwok and I. Tsang. Linear dependency between $\varepsilon$ and the input noise in ε-support vector regression. IEEE Transactions on Neural Networks, 14(3):544--553, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. F. Lauer. Estimating the probability of success of a simple algorithm for switched linear regression. Nonlinear Analysis: Hybrid Systems, 8:31--47, 2013. Supplementary material available at http://www.loria.fr/ lauer/klinreg/.Google ScholarGoogle ScholarCross RefCross Ref
  16. F. Lauer and G. Bloch. Switched and piecewise nonlinear hybrid system identification. In Proc. of the 11th Int. Conf. on Hybrid Systems: Computation and Control (HSCC), volume 4981 of LNCS, pages 330--343, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. F. Lauer, G. Bloch, and R. Vidal. A continuous optimization framework for hybrid system identification. Automatica, 47(3):608--613, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. F. Lauer, V. L. Le, and G. Bloch. Learning smooth models of nonsmooth functions via convex optimization. In Proc. of the IEEE Int. Workshop on Machine Learning for Signal Processing (MLSP), Santander, Spain, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  19. V. L. Le, G. Bloch, and F. Lauer. Reduced-size kernel models for nonlinear hybrid system identification. IEEE Transactions on Neural Networks, 22(12):2398--2405, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. G. Loosli, G. Gasso, and S. Canu. Regularization paths for ν-SVM and ν-SVR. In Advances in Neural Networks -- ISNN, volume 4493 of LNCS, pages 486--496, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. O. Mangasarian and D. Musicant. Large scale kernel regression via linear programming. Machine Learning, 46(1):255--269, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. H. Ohlsson and L. Ljung. Identification of piecewise affine systems using sum-of-norms regularization. In Proc. of the 18th IFAC World Congress, pages 6640--6645, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  23. N. Ozay, M. Sznaier, C. Lagoa, and O. Camps. A sparsification approach to set membership identification of switched affine systems. IEEE Transactions on Automatic Control, 57(3):634--648, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  24. S. Paoletti, A. L. Juloski, G. Ferrari-Trecate, and R. Vidal. Identification of hybrid systems: a tutorial. European Journal of Control, 13(2--3):242--262, 2007.Google ScholarGoogle ScholarCross RefCross Ref
  25. J. Platt. Fast training of support vector machines using sequential minimal optimization. In B. Schölkopf, C. Burges, and A. Smola, editors, Advances in Kernel Methods: Support Vector Learning, pages 185--208. MIT Press, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. J. Roll, A. Bemporad, and L. Ljung. Identification of piecewise affine systems via mixed-integer programming. Automatica, 40(1):37--50, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. B. Schölkopf, R. Herbrich, and A. Smola. A generalized representer theorem. In Proc. of COLT/EuroCOLT, volume 2111 of LNAI, pages 416--426, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. B. Schölkopf, A. Smola, R. Williamson, and P. Bartlett. New support vector algorithms. Neural computation, 12(5):1207--1245, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. S. Shevade, S. Keerthi, C. Bhattacharyya, and K. Murthy. Improvements to the SMO algorithm for SVM regression. IEEE Transactions on Neural Networks, 11(5):1188--1193, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. A. Smola, N. Murata, B. Schölkopf, and K. Müller. Asymptotically optimal choice of ε-loss for support vector machines. In Proc. of the 8th Int. Conf. on Artificial Neural Networks (ICANN), pages 105--110, 1998.Google ScholarGoogle ScholarCross RefCross Ref
  31. A. Smola, B. Schölkopf, and G. Ratsch. Linear programs for automatic accuracy control in regression. In Proc. of the 9th Int. Conf. on Artificial Neural Networks (ICANN), pages 575--580, 1999.Google ScholarGoogle ScholarCross RefCross Ref
  32. A. J. Smola and B. Schölkopf. A tutorial on support vector regression. Statistics and Computing, 14(3):199--222, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. I. Steinwart and A. Christmann. Support Vector Machines. Springer, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. F. Tay and L. Cao. Modified support vector machines in financial time series forecasting. Neurocomputing, 48(1):847--861, 2002.Google ScholarGoogle ScholarCross RefCross Ref
  35. V. Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag, 1995. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. R. Vidal, S. Soatto, Y. Ma, and S. Sastry. An algebraic geometric approach to the identification of a class of linear hybrid systems. In Proc. of the 42nd IEEE Conf. on Decision and Control (CDC), pages 167--172, 2003.Google ScholarGoogle ScholarCross RefCross Ref
  37. G. Wang, D. Yeung, and F. Lochovsky. Two-dimensional solution path for support vector regression. In Proc. of the 23rd Int. Conf. on Machine Learning (ICML), pages 993--1000, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Learning nonlinear hybrid systems: from sparse optimization to support vector regression

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Conferences
          HSCC '13: Proceedings of the 16th international conference on Hybrid systems: computation and control
          April 2013
          378 pages
          ISBN:9781450315678
          DOI:10.1145/2461328

          Copyright © 2013 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 8 April 2013

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

          Acceptance Rates

          HSCC '13 Paper Acceptance Rate40of86submissions,47%Overall Acceptance Rate153of373submissions,41%

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader