skip to main content
research-article

Memristive devices in computing system: Promises and challenges

Published:29 May 2013Publication History
Skip Abstract Section

Abstract

Memristive devices with a simple structure are not only very small but also very versatile, which makes them an ideal candidate used for the next generation computing system in the post-Si era. The working mechanism of the devices and a family of nanodevices built based on this working mechanism are introduced first followed by some proposed applications of these novel devices. The promises and challenges of these devices are then discussed, together with the significant progresses made recently in dealing with these challenges.

References

  1. Akinaga, H. and Shima, H. 2010. Resistive random access memory (ReRAM) based on metal oxides. Proc. IEEE 98, 2237--2251.Google ScholarGoogle ScholarCross RefCross Ref
  2. Baikalov, A., Wang, Y. Q., Shen, B., Lorenz, B., Tsui, S., Sun, Y. Y., Xue, Y. Y., and Chu, C. W. 2003. Field-driven hysteretic and reversible resistive switch at the AGPR0.7CA0.3MNO3 Interface. Appl. Phys. Lett. 83, 957--959.Google ScholarGoogle ScholarCross RefCross Ref
  3. Borghetti, J., Snider, G. S., Kuekes, P. J., Yang, J. J., Stewart, D. R., and Williams, R. S. 2010. ‘Memristive’ switches enable ‘stateful’ logic operations via material implication. Nature 464, 873--876.Google ScholarGoogle ScholarCross RefCross Ref
  4. Chen, X., Wu, N., Strozier, J., and Ignatiev, A. 2006. Spatially extended nature of resistive switching in perovskite oxide thin films. Appl. Phys. Lett. 89, 063507.Google ScholarGoogle ScholarCross RefCross Ref
  5. Chien, W. C. Chen, Y. C., et al. 2010. Unipolar switching behaviors of RTO WOX RRAM. IEEE Electron Device Lett. 31, 126--128.Google ScholarGoogle ScholarCross RefCross Ref
  6. Choi, B. J. 2005. Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition. J. Appl. Phys. 98, 033715.Google ScholarGoogle ScholarCross RefCross Ref
  7. Chopra, K. L. 1965. Avalanche-induced negative resistance in thin oxide films. J. Appl. Phys. 36, 184--187.Google ScholarGoogle ScholarCross RefCross Ref
  8. Chua, L. O. 1971. Memristor: Missing circuit element. IEEE Trans. Circuit Theory CT-18, 507--519.Google ScholarGoogle ScholarCross RefCross Ref
  9. Chua, L. O. and Kang, S. M. 1976. Memristive devices and systems. Proc. IEEE 64, 209--223.Google ScholarGoogle ScholarCross RefCross Ref
  10. Chua, L. O. 2011. Resistance switching memories are memristors. Appl. Phys. A 102, 765--783.Google ScholarGoogle ScholarCross RefCross Ref
  11. Dearnaley, G., Stoneham, A. M., and Morgan, D. V. 1970. Electrical phenomena in amorphous oxide films. Rep. Prog. Phys. 33, 1129--1191.Google ScholarGoogle ScholarCross RefCross Ref
  12. Fors, R., Khartsev, S. I., and Grishin, A. M. 2005. Giant resistance switching in metal-insulator-manganite junctions: Evidence for MOTT tRANSITION. Phys. Rev. B 71.Google ScholarGoogle ScholarCross RefCross Ref
  13. Kawasaki, T., Fujii, M., Sawa, A., and Akoh, H. 2005. Hysteretic current-voltage characteristics and resistance switching at an epitaxial oxide Schottky junction SrRuO3/SrTi0.99Nb0.01O3. Appl. Phys. Lett. 86, 012107.Google ScholarGoogle ScholarCross RefCross Ref
  14. Gregory, S. S. and Williams, R. S. 2007. NANO/CMOS architectures using a field-programmable nanowire interconnect. Nanotechnol. 18, 035204.Google ScholarGoogle ScholarCross RefCross Ref
  15. Hasegawa, T., Ohno, T., Terabe, K., Tsuruoka, T., Nakayama, T., Gimzewski, J. K., and Aono, M. 2010. Learning abilities achieved by a single solid-state atomic switch. Adv. Mater. 22, 1831--1834.Google ScholarGoogle ScholarCross RefCross Ref
  16. Hasegawa, T., Terabe, K., Tsuruoka, T., and Aono, M. 2012. Atomic switch: atom/ion movement controlled devices for beyond Von Neumann computers. Adv. Mater. 24, 252--267.Google ScholarGoogle ScholarCross RefCross Ref
  17. Hickmott, T. W. 1962. Low-frequency negative resistance in thin anodic oxide films. J. Appl. Phys. 33, 2669--2682.Google ScholarGoogle ScholarCross RefCross Ref
  18. Hutchby, J. and Garner, M. 2010. Assessment of the potential and maturity of selected emerging research memory technologies. Workshop and ERD/ERM Working Group Meeting. http://www.itrs.net/links/2010itrs/2010update/topost/erd_erm_2010finalreportmemoryassessment_itrs.pdf.Google ScholarGoogle Scholar
  19. Inoue, I. H. and Rozenberg, M. J. 2008. Taming the Mott transition for a novel Mott transistor. Adv. Funct. Mater. 18, 2289--2292.Google ScholarGoogle ScholarCross RefCross Ref
  20. Jameson, J. R. 2007. Field-programmable rectification in rutile TiO2 Crystals. Appl. Phys. Lett. 91, 112101.Google ScholarGoogle ScholarCross RefCross Ref
  21. Jeon, S. H., Park, B. H., Lee, J., Lee, B., and Han, S. 2006. First-principles modeling of resistance switching in perovskite oxide material. Appl. Phys. Lett. 89, 42904.Google ScholarGoogle ScholarCross RefCross Ref
  22. Jo, S. H.,Chang, T., Ebong, I., Bhadviya, B. B., Mazumder, P., and Lu. W. 2010. Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 10, 1297--1301.Google ScholarGoogle ScholarCross RefCross Ref
  23. Kim, K. M., Choi, B. J., Shin, Y. C., Choi, S., and Hwang, C. S. 2007. Anode-interface localized filamentary mechanism in resistive switching of tio2 thin films. Appl. Phys. Lett. 91, 012907.Google ScholarGoogle ScholarCross RefCross Ref
  24. Kim, K.-H., Gaba, S., Wheeler, D., Cruz-Albrecht, J.-M., Hussain, T., Srinivasa, N., and Lu, W. 2012. A functional hybrid memristor crossbar-array/CMOS system for data storage and neuromorphic applications. Nano Lett. 12, 389--395.Google ScholarGoogle ScholarCross RefCross Ref
  25. Knauth, P. and Tuller, H. L. 1999. Electrical and defect thermodynamic properties of nanocrystalline titanium dioxide. J. Appl. Phys. 85, 897--902.Google ScholarGoogle ScholarCross RefCross Ref
  26. Kwon, D. H., Kim, K. M., et al. 2010. Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. Nat. Nanotechnol. 5, 148--153.Google ScholarGoogle ScholarCross RefCross Ref
  27. Lee, D. 2007. Resistance switching of copper doped moox films for nonvolatile memory applications. Appl. Phys. Lett. 90, 122104.Google ScholarGoogle ScholarCross RefCross Ref
  28. Lee, H. Y., Chen, Y. S. et al. 2010. Evidence and solution of over-RESET problem for HfOX based resistive memory with sub-ns switching speed and high endurance. In Proceedings of the International Electron Devices Meeting. IEEE, 460.Google ScholarGoogle Scholar
  29. Likharev, K. K. 2011. Crossnets: Neuromorphic hybrid CMOS/Nanoelectronic networks. Sci. Adv. Mater. 3, 322--331.Google ScholarGoogle ScholarCross RefCross Ref
  30. Liu, S. Q., Wu, N. J., and Ignatiev, A. 2000. Electric-pulse-induced reversible resistance change effect in magnetoresistive films. Appl. Phys. Lett. 76, 2749--2751.Google ScholarGoogle ScholarCross RefCross Ref
  31. Miao, F., Strachan, J. P., et al. 2011. Anatomy of a nanoscale conduction channel reveals the mechanism of a high-performance memristor. Adv. Mater. 23, 5633--5640.Google ScholarGoogle ScholarCross RefCross Ref
  32. Miao, F., Yi, W., et al. 2012. Continuous electrical tuning of the chemical composition of TaOx-based memristors. ACS Nano 6, 2312--2318.Google ScholarGoogle ScholarCross RefCross Ref
  33. Nian, Y. B., Strozier, J., Wu, N. J., Chen, X., and Ignatiev, A. 2007. Evidence for an oxygen diffusion model for the electric pulse induced resistance change effect in transition-metal oxides. Phys. Rev. Lett. 98, 146403.Google ScholarGoogle ScholarCross RefCross Ref
  34. Norton, D. P. 2004. Synthesis and properties of epitaxial electronic oxide thin-film materials. Mat. Sci. Eng., R: 43, 139--247.Google ScholarGoogle ScholarCross RefCross Ref
  35. Ohno, T., Hasegawa, T., Tsuruoka, T., Terabe, K., Gimzewski, J. K., and Aono, M. 2011. Short-term plasticity and long-term potentiation mimicked in single inorganic synapses. Nat Mater. 10, 591--595.Google ScholarGoogle ScholarCross RefCross Ref
  36. Parkin, S. S. P., Kaiser, C., Panchula, A., Rice, P. M., Hughes, B., Samant, M., and Yang, S. H. 2004. Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers. Nat. Mater. 3, 862--867.Google ScholarGoogle ScholarCross RefCross Ref
  37. Pickett, M. D., Strukov, D. B., Borghetti, J. L., Yang, J. J., Snider, G. S., Stewart, D. R., and Williams, R. S. 2009. Switching dynamics in titanium dioxide memristive devices. J. Appl. Phys. 106, 074508.Google ScholarGoogle ScholarCross RefCross Ref
  38. Rohde, C. 2005. Identification of a determining parameter for resistive switching of TiO2 thin films. Appl. Phys. Lett. 86, 262907.Google ScholarGoogle ScholarCross RefCross Ref
  39. Rozenberg, M. J., Inoue, I. H., and Sanchez, M. J. 2004. Nonvolatile memory with multilevel switching: A basic model. Phys. Rev. Lett. 92, 178302.Google ScholarGoogle ScholarCross RefCross Ref
  40. Sawa, A., Fujii, T., Kawasaki, M., and Tokura, Y. 2004. Hysteretic current-voltage characteristics and resistance switching at a rectifying Ti//Pr0.7Ca0.3MnO3 interface. Appl. Phys. Lett. 85, 4073--4075.Google ScholarGoogle ScholarCross RefCross Ref
  41. Shannon, C. E. 1938. Symbolic analysis of relay and switching circuits. Trans. AIEE 57, 713--723.Google ScholarGoogle Scholar
  42. Simmons, J. G. and Verderber, R. R. 1967. New conduction and reversible memory phenomena in thin insulating films. Proc. R. Soc. London, Ser. A 301, 77--102.Google ScholarGoogle ScholarCross RefCross Ref
  43. Snider, G. S. 2008. Spike-timing-dependent learning in memristive nanodevices. In Proceedings of the IEEE International Symposium on Nanoscale Architectures. IEEE, 85--92. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Strachan, J. P., Pickett, M. D., Yang, J. J., Aloni, S., David Kilcoyne, A. L., Medeiros-Ribeiro, G., and Williams, R. S. 2010. Direct identification of the conducting channels in a functioning memristive device. Adv. Mater. 22, 3573--3577.Google ScholarGoogle ScholarCross RefCross Ref
  45. Strukov, D. B., Snider, G. S., Stewart, D. R., and Williams, R. S. 2008. The missing memristor found. Nature 453, 80--83.Google ScholarGoogle ScholarCross RefCross Ref
  46. Strukov, D. B. and Williams, R. S. 2009a. Four-dimensional address topology for circuits with stacked multilayer crossbar arrays. Proc. Nat. Acad. Sci. 106, 20155--20158.Google ScholarGoogle ScholarCross RefCross Ref
  47. Strukov, D. B. and Williams, R. S. 2009b. Exponential ionic drift: fast switching and low volatility of thin-film memristors. Appl. Phys. A 94, 515--519.Google ScholarGoogle ScholarCross RefCross Ref
  48. Szot, K., Speier, W., Bihlmayer, G., and Waser, R. 2006. Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3. Nat. Mater. 5, 312--320.Google ScholarGoogle ScholarCross RefCross Ref
  49. Torrezan, A. C., Strachan, J. P., Medeiros-Ribeiro, G., and Williams, R. S. 2011. Sub-nanosecond switching of a tantalum oxide memristor. Nanotechnol. 22, 485203.Google ScholarGoogle ScholarCross RefCross Ref
  50. Tsui, S., Wang, Y. Q., Xue, Y. Y., and Chu, C. W. 2006. Mechanism and scalability in resistive switching of metal-Pr0.7Ca0.3MnO3 interface. Appl. Phys. Lett. 89.Google ScholarGoogle ScholarCross RefCross Ref
  51. Tsunoda, K. 2007. Bipolar resistive switching in polycrystalline TiO2 films. Appl. Phys. Lett. 90, 113501.Google ScholarGoogle ScholarCross RefCross Ref
  52. Vogel, E. M. 2007. Technology and metrology of new electronic materials and devices. Nat. Nanotechnol. 2, 25--32.Google ScholarGoogle ScholarCross RefCross Ref
  53. Waser, R., Dittmann, R., Staikov, G., and Szot, K. 2009. Redox-based resistive switching memories: Nanoionic mechanisms, prospects, and challenges. Adv. Mater. 21, 2632--2663.Google ScholarGoogle ScholarCross RefCross Ref
  54. Watanabe, Y., Bednorz, J. G., Bietsch, A., Gerber C., Widmer, D., Beck, A., and Wind, S. J. 2001. Current-driven insulator-conductor transition and nonvolatile memory in chromium-doped SrTiO3 single crystals. Appl. Phys. Lett. 78, 3738--3740.Google ScholarGoogle ScholarCross RefCross Ref
  55. Whitehead, A. N. and Russell, B. 1910. Principia Mathematica. Cambridge University Press.Google ScholarGoogle Scholar
  56. Wong, H. S. P., Heng-Yuan, L., et al. 2012. Metal-oxide RRAM. Proc. IEEE 100, 1951--1970.Google ScholarGoogle ScholarCross RefCross Ref
  57. Xia, Q. F., Robinett, W., et al. 2009. Memristor-CMOS hybrid integrated circuits for reconfigurable logic. Nano Lett. 9, 3640--3645.Google ScholarGoogle ScholarCross RefCross Ref
  58. Yang, J. J., Strachan, J. P., et al. 2010. Diffusion of adhesion layer metals controls nanoscale memristive switching. Adv. Mater. 22, 4034--4038.Google ScholarGoogle ScholarCross RefCross Ref
  59. Yang, J. J., Miao, F., Pickett, M. D., Ohlberg, D. A. A., Stewart, D. R., Lau, C. N., and Williams, R. S. 2009. The mechanism of electroforming of metal oxide memristive switches. Nanotechnol. 20, 215201.Google ScholarGoogle ScholarCross RefCross Ref
  60. Yang, J. J., Pickett, M. D., Li, X., Ohlberg, D. A. A., Stewart, D. R., and Williams, R. S. 2008. Memristive switching mechanism for metal/oxide/metal nanodevices. Nat. Nanotchnol. 3, 429--433.Google ScholarGoogle ScholarCross RefCross Ref
  61. Yang, J. J., Inoue, I. H., Mikolajick, T., and Hwang, C. S. 2012a. Metal oxide memories based on thermochemical and valence change mechanisms. MRS Bull. 37, 131--137.Google ScholarGoogle ScholarCross RefCross Ref
  62. Yang, J. J., Kobayashi, N. P., Strachan, J. P., Zhang, M. X., Ohlberg, D. A. A., Pickett, M. D., Li, Z., Medeiros-Ribeiro, G., and Williams, R. S. 2011a. Dopant control by atomic layer deposition in oxide films for memristive switches. Chem. Mater. 23, 123--125.Google ScholarGoogle ScholarCross RefCross Ref
  63. Yang, J. J., Strachan, J. P., Miao, F., Zhang, M.-X., Pickett, M., Yi, W., Ohlberg, D., Medeiros-Ribeiro, G., and Williams, R. S. 2011b. Metal/TiO2 Interfaces for memristive switches. Appl. Phys. A 102, 785--789.Google ScholarGoogle ScholarCross RefCross Ref
  64. Yang, J. J., Zhang, M. X., et al. 2012b. Engineering nonlinearity into memristors for passive crossbar applications. Appl. Phys. Lett. 100, 113501.Google ScholarGoogle ScholarCross RefCross Ref
  65. Yoshida, C., Tsunoda, K., Noshiro, H., and Sugiyama, Y. 2007. High speed resistive switching in Pt/TiO2/tin film for nonvolatile memory application. Appl. Phys. Lett. 91, 223510.Google ScholarGoogle ScholarCross RefCross Ref
  66. Yuasa, S., Nagahama, T., Fukushima, A., Suzuki, Y., and Ando, K. 2004. Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions. Nat Mater 3, 868--871.Google ScholarGoogle ScholarCross RefCross Ref
  67. Zhirnov, V. V., Cavin, R. K., Menzel, S., Linn, E., Schmelzer, S., Brauhaus, D., Schindler, C., and Waser, R. 2010. Memory devices: Energy-space-time trade-offs. Proc. IEEE 98, 2185--2200.Google ScholarGoogle ScholarCross RefCross Ref
  68. Zhirnov, V. V., Meade, R., Cavin, R. K., and Sandhu, G. 2011. Scaling limits of resistive memories. Nanotechnol. 22, 254027.Google ScholarGoogle ScholarCross RefCross Ref
  69. Zhirnov, V. V. and Cavin, R. K. 2008. Nanodevices: Charge of the heavy brigade. Nat. Nanotech. 3, 377--378.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Memristive devices in computing system: Promises and challenges

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Journal on Emerging Technologies in Computing Systems
      ACM Journal on Emerging Technologies in Computing Systems  Volume 9, Issue 2
      Special issue on memory technologies
      May 2013
      133 pages
      ISSN:1550-4832
      EISSN:1550-4840
      DOI:10.1145/2463585
      Issue’s Table of Contents

      Copyright © 2013 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 29 May 2013
      • Accepted: 1 November 2012
      • Revised: 1 September 2012
      • Received: 1 June 2012
      Published in jetc Volume 9, Issue 2

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader