skip to main content
10.1145/2463676.2465315acmconferencesArticle/Chapter ViewAbstractPublication PagesmodConference Proceedingsconference-collections
research-article

Fast exact shortest-path distance queries on large networks by pruned landmark labeling

Authors Info & Claims
Published:22 June 2013Publication History

ABSTRACT

We propose a new exact method for shortest-path distance queries on large-scale networks. Our method precomputes distance labels for vertices by performing a breadth-first search from every vertex. Seemingly too obvious and too inefficient at first glance, the key ingredient introduced here is pruning during breadth-first searches. While we can still answer the correct distance for any pair of vertices from the labels, it surprisingly reduces the search space and sizes of labels. Moreover, we show that we can perform 32 or 64 breadth-first searches simultaneously exploiting bitwise operations. We experimentally demonstrate that the combination of these two techniques is efficient and robust on various kinds of large-scale real-world networks. In particular, our method can handle social networks and web graphs with hundreds of millions of edges, which are two orders of magnitude larger than the limits of previous exact methods, with comparable query time to those of previous methods.

References

  1. I. Abraham, D. Delling, A. V. Goldberg, and R. F. Werneck. A hub-based labeling algorithm for shortest paths in road networks. In SEA, pages 230--241, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. I. Abraham, D. Delling, A. V. Goldberg, and R. F. Werneck. Hierarchical hub labelings for shortest paths. In ESA, pages 24--35. 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. V. Agarwal, F. Petrini, D. Pasetto, and D. A. Bader. Scalable graph exploration on multicore processors. In SC, pages 1--11, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. T. Akiba, C. Sommer, and K. Kawarabayashi. Shortest-path queries for complex networks: exploiting low tree-width outside the core. In EDBT, pages 144--155, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. R. Albert, H. Jeong, and A. L. Barabasi. The diameter of the world wide web. Nature, 401:130--131, 1999.Google ScholarGoogle ScholarCross RefCross Ref
  6. L. Backstrom, D. Huttenlocher, J. Kleinberg, and X. Lan. Group formation in large social networks: membership, growth, and evolution. In KDD, pages 44--54, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D. Hwang. Complex networks: Structure and dynamics. Physics reports, 424(4-5):175--308, 2006.Google ScholarGoogle ScholarCross RefCross Ref
  8. P. Boldi, M. Rosa, M. Santini, and S. Vigna. Layered label propagation: a multiresolution coordinate-free ordering for compressing social networks. In WWW, pages 587--596, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. P. Boldi and S. Vigna. The webgraph framework I: compression techniques. In WWW, pages 595--602, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. D. S. Callaway, M. E. J. Newman, S. H. Strogatz, and D. J. Watts. Network robustness and fragility: Percolation on random graphs. Physical Review Letters, 85:5468--5471, 2000.Google ScholarGoogle ScholarCross RefCross Ref
  11. W. Chen, C. Sommer, S.-H. Teng, and Y. Wang. A compact routing scheme and approximate distance oracle for power-law graphs. TALG, 9(1):4:1--26, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. J. Cheng and J. X. Yu. On-line exact shortest distance query processing. In EDBT, pages 481--492, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. E. Cohen, E. Halperin, H. Kaplan, and U. Zwick. Reachability and distance queries via 2-hop labels. In SODA, pages 937--946, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. W. Fan, J. Li, X. Wang, and Y. Wu. Query preserving graph compression. In SIGMOD, pages 157--168, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. A. Gubichev, S. Bedathur, S. Seufert, and G. Weikum. Fast and accurate estimation of shortest paths in large graphs. In CIKM, pages 499--508, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. H. He, H. Wang, J. Yang, and P. S. Yu. Blinks: ranked keyword searches on graphs. In SIGMOD, pages 305--316, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. R. Jin, N. Ruan, Y. Xiang, and V. Lee. A highway-centric labeling approach for answering distance queries on large sparse graphs. In SIGMOD, pages 445--456, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. C. Jordan. Sur les assemblages de lignes. J. Reine Angew Math, 70:185--190, 1869.Google ScholarGoogle ScholarCross RefCross Ref
  19. D. Kempe, J. Kleinberg, and E. Tardos. Maximizing the spread of influence through a social network. In KDD, pages 137--146, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. J. Leskovec, D. Huttenlocher, and J. Kleinberg. Predicting positive and negative links in online social networks. In WWW, pages 641--650, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. J. Leskovec, D. Huttenlocher, and J. Kleinberg. Signed networks in social media. In CHI, pages 1361--1370, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. J. Leskovec, J. Kleinberg, and C. Faloutsos. Graphs over time: Densification laws, shrinking diameters and possible explanations. In KDD, pages 177--187, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. J. Leskovec, K. Lang, A. Dasgupta, and M. Mahoney. Community structure in large networks: Natural cluster sizes and the absence of large well-defined clusters. Internet Mathematics, 6(1):29--123, 2009.Google ScholarGoogle ScholarCross RefCross Ref
  24. C. Magnien, M. Latapy, and M. Habib. Fast computation of empirically tight bounds for the diameter of massive graphs. J. Exp. Algorithmics, 13:10:1.10-10:1.9, Feb. 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser, and G. Czajkowski. Pregel: a system for large-scale graph processing. In SIGMOD, pages 135--146, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel, and B. Bhattacharjee. Measurement and analysis of online social networks. In IMC, pages 29--42, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. M. E. J. Newman, S. H. Strogatz, and D. J. Watts. Random graphs with arbitrary degree distributions and their applications. Physical Review E, 64(2):026118 1--17, 2001.Google ScholarGoogle ScholarCross RefCross Ref
  28. R. Pastor-Satorras and A. Vespignani. Evolution and structure of the Internet: A statistical physics approach. Cambridge University Press, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. M. Potamias, F. Bonchi, C. Castillo, and A. Gionis. Fast shortest path distance estimation in large networks. In CIKM, pages 867--876, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. M. Qiao, H. Cheng, L. Chang, and J. X. Yu. Approximate shortest distance computing: A query-dependent local landmark scheme. In ICDE, pages 462--473, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. S. A. Rahman, P. Advani, R. Schunk, R. Schrader, and D. Schomburg. Metabolic pathway analysis web service (pathway hunter tool at cubic). Bioinformatics, 21(7):1189--1193, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. S. A. Rahman and D. Schomburg. Observing local and global properties of metabolic pathways: 'load points' and 'choke points' in the metabolic networks. Bioinformatics, 22(14):1767--1774, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. M. Richardson, R. Agrawal, and P. Domingos. Trust management for the semantic web. In ISWC, volume 2870, pages 351--368. 2003.Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. M. Ripeanu, A. Iamnitchi, and I. Foster. Mapping the gnutella network. IEEE Internet Computing, 6(1):50--57, Jan. 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. N. Robertson and P. D. Seymour. Graph minors. III. Planar tree-width. J. Comb. Theory, Ser. B, 36(1):49--64, 1984.Google ScholarGoogle ScholarCross RefCross Ref
  36. L. Tang and M. Crovella. Virtual landmarks for the internet. In SIGCOMM, pages 143--152, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. T. Tran, H. Wang, S. Rudolph, and P. Cimiano. Top-k exploration of query candidates for efficient keyword search on graph-shaped (RDF) data. In ICDE, pages 405--416, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. K. Tretyakov, A. Armas-Cervantes, L. Garcia-Banuelos, J. Vilo, and M. Dumas. Fast fully dynamic landmark-based estimation of shortest path distances in very large graphs. In CIKM, pages 1785--1794, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. A. Ukkonen, C. Castillo, D. Donato, and A. Gionis. Searching the wikipedia with contextual information. In CIKM, pages 1351--1352, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. M. V. Vieira, B. M. Fonseca, R. Damazio, P. B. Golgher, D. d. C. Reis, and B. Ribeiro-Neto. Efficient search ranking in social networks. In CIKM, pages 563--572, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. F. Wei. Tedi: efficient shortest path query answering on graphs. In SIGMOD, pages 99--110, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. S. A. Yahia, M. Benedikt, L. V. S. Lakshmanan, and J. Stoyanovich. Efficient network aware search in collaborative tagging sites. PVLDB, 1(1):710--721, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Fast exact shortest-path distance queries on large networks by pruned landmark labeling

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      SIGMOD '13: Proceedings of the 2013 ACM SIGMOD International Conference on Management of Data
      June 2013
      1322 pages
      ISBN:9781450320375
      DOI:10.1145/2463676

      Copyright © 2013 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 22 June 2013

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      SIGMOD '13 Paper Acceptance Rate76of372submissions,20%Overall Acceptance Rate785of4,003submissions,20%

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader