skip to main content
10.1145/2486001.2486023acmconferencesArticle/Chapter ViewAbstractPublication PagescommConference Proceedingsconference-collections
research-article
Free Access

Less pain, most of the gain: incrementally deployable ICN

Published:27 August 2013Publication History

ABSTRACT

Information-Centric Networking (ICN) has seen a significant resurgence in recent years. ICN promises benefits to users and service providers along several dimensions (e.g., performance, security, and mobility). These benefits, however, come at a non-trivial cost as many ICN proposals envision adding significant complexity to the network by having routers serve as content caches and support nearest-replica routing. This paper is driven by the simple question of whether this additional complexity is justified and if we can achieve these benefits in an incrementally deployable fashion. To this end, we use trace-driven simulations to analyze the quantitative benefits attributed to ICN (e.g., lower latency and congestion). Somewhat surprisingly, we find that pervasive caching and nearest-replica routing are not fundamentally necessary---most of the performance benefits can be achieved with simpler caching architectures. We also discuss how the qualitative benefits of ICN (e.g., security, mobility) can be achieved without any changes to the network. Building on these insights, we present a proof-of-concept design of an incrementally deployable ICN architecture.

References

  1. B. Ahlgren, C. Dannewitz, C. Imbrenda, D. Kutscher, and B. Ohlman. A survey of information-centric networking. Communications Magazine, IEEE, 50(7), july 2012.Google ScholarGoogle Scholar
  2. P. A. Aranda, M. Zitterbart, Z. Boudjemil, M. Ghader, G. H. Garcia, M. Johnsson, A. Karouia, G. Lazar, M. Majanen, P. Mannersalo, D. Martin, M. T. Nguyen, S. P. Sanchez, P. Phelan, M. Ponce de Leon, G. Schultz, M. Sollner, Y. Zaki, and L. Zhao. 4WARD. http://www.4ward-project.eu/, 2010.Google ScholarGoogle Scholar
  3. S. Arianfar, T. Koponen, B. Raghavan, and S. Shenker. On preserving privacy in content-oriented networks. In Proc. SIGCOMM Workshop on ICN, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Browser Support for PAC and WPAD. http://findproxyforurl.com/browser-support/.Google ScholarGoogle Scholar
  5. B. Baccala. Data-oriented networking. http://tools.ietf.org/html/draft-baccala-datanetworking-00, 2002.Google ScholarGoogle Scholar
  6. D. Beaver, S. Kumar, H. C. Li, J. Sobel, and P. Vajgel. Finding a needle in haystack: Facebook's photo storage. In Proc. OSDI, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker. Web caching and Zipf-like distributions: evidence and implications. In Proc. INFOCOM, 1999.Google ScholarGoogle ScholarCross RefCross Ref
  8. A. Bryan, N. McNab, T. Tsujikawa, P. Poeml, and H. Nordstrom. Metalink/HTTP: Mirrors and Hashes. RFC 6249 (Proposed Standard), June 2011.Google ScholarGoogle Scholar
  9. Emerging Network Consortium Brings Industries Together to Innovate with Content-Centric Networking (CCN). http://www.mach.com/en/News-Events/Press-Room/Press-Releases/Emerging-Network-Consortium-Brings-Industries-Togetherto-Innovate-with-Content-Centric-Networking-CCN.Google ScholarGoogle Scholar
  10. S. Cheshire, B. Aboba, and E. Guttman. Dynamic Configuration of IPv4 Link-Local Addresses. RFC 3927 (Proposed Standard), May 2005.Google ScholarGoogle Scholar
  11. S. Cheshire and M. Krochmal. Multicast DNS. Technical report, IETF, December 2011.Google ScholarGoogle Scholar
  12. CloudFlare security. http://www.cloudflare.com/features-security.Google ScholarGoogle Scholar
  13. COntent Mediator architecture for content-aware nETworks (COMET). http://www.comet-project.org/.Google ScholarGoogle Scholar
  14. I. Cooper, P. Gauthier, J. Cohen, M. Dunsmuir, and C. Perkins. Web proxy auto-discovery protocol. Technical report, IETF, May 2001.Google ScholarGoogle Scholar
  15. N. Fotiou, P. Nikander, D. Trossen, and G. C. Polyzos. Developing information networking further: From PSIRP to PURSUIT. In Proc. BROADNETS, 2010.Google ScholarGoogle Scholar
  16. P. Gasti, G. Tsudik, E. Uzun, and L. Zhang. DoS and DDoS in named-data networking. CoRR, abs/1208.0952, 2012.Google ScholarGoogle Scholar
  17. A. Ghodsi, T. Koponen, J. Rajahalme, P. Sarolahti, and S. Shenker. Naming in Content-Oriented Architectures. In Proc. SIGCOMM Workshop on ICN, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. A. Ghodsi, S. Shenker, T. Koponen, A. Singla, B. Raghavan, and J. Wilcox. Information-centric networking: seeing the forest for the trees. In Proc. HotNets, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. A. Ghodsi, S. Shenker, T. Koponen, A. Singla, B. Raghavan, and J. Wilcox. Intelligent design enables architectural evolution. In Proc. HotNets, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. P. Gill, M. Arlitt, Z. Li, and A. Mahanti. YouTube traffic characterization: A view from the edge, imc. In Proc. IMC, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. M. Gritter and D. R. Cheriton. TRIAD: A New Next-Generation Internet Architecture. http://www-dsg.stanford.edu/triad/, 2000.Google ScholarGoogle Scholar
  22. D. Han, A. Anand, F. Dogar, B. Li, H. Lim, M. Machado, A. Mukundan, W. Wu, A. Akella, D. G. Andersen, J. W. Byers, S. Seshan, and P. Steenkiste. XIA: efficient support for evolvable internetworking. In Proc. NSDI, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs, and R. L. Braynard. Networking named content. In Proc. CoNEXT, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. V. Jacobson, J. D. Thornton, D. K. Smetters, B. Zhang, G. Tsudik, k. claffy, D. Krioukov, D. Massey, C. Papadopoulos, T. Abdelzaher, L. Wang, P. Crowley, and E. Yeh. Named Data Networking (NDN) project. http://named-data.net/techreport/TR001ndn proj.pdf, 2010.Google ScholarGoogle Scholar
  25. W. Jiang, R. Zhang-Shen, J. Rexford, and M. Chiang. Cooperative content distribution and traffic engineering in an ISP network. In Proc. SIGMETRICS, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. P. Jokela, A. Zahemszky, C. Esteve Rothenberg, S. Arianfar, and P. Nikander. LIPSIN: line speed publish/subscribe inter-networking. In Proc. SIGCOMM, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. D. Kim, J. Kim, Y. Kim, H. Yoon, and I. Yeom. Mobility support in content centric networks. In Proc. SIGCOMM Workshop on ICN, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. T. Koponen, M. Chawla, B.-G. Chun, A. Ermolinskiy, K. H. Kim, S. Shenker, and I. Stoica. A data-oriented (and beyond) network architecture. In Proc. SIGCOMM, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. L. Li, X. Xu, J. Wang, and Z. Hao. Information-centric network in an ISP. http://tools.ietf.org/html/draft-li-icnrg-icn-isp-01, 2013.Google ScholarGoogle Scholar
  30. D. Mazières, M. Kaminsky, M. F. Kaashoek, and E. Witchel. Separating key management from file system security. In Proc. SOSP, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. G. Mohr. Magnet uri scheme draft, 2002. http://magneturi.sourceforge.net/magnet-draft-overview.txt.Google ScholarGoogle Scholar
  32. E. Nordstrom, D. Shue, P. Gopalan, R. Kiefer, M. Arye, S. Ko, J. Rexford, , and M. J. Freedman. Serval: An end-host stack for service-centric networking. In Proc. NSDI, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Navigator proxy auto-config file format. Netscape Navigator Documentation, March 1996.Google ScholarGoogle Scholar
  34. D. Perino and M. Varvello. A reality check for content centric networking. In Proc. SIGCOMM Workshop on ICN, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. I. Poese, B. Frank, G. Smaragdakis, S. Uhlig, A. Feldmann, and B. Maggs. Enabling content-aware traffic engineering. ACM SIGCOMM CCR, 42(5):21--28, October 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. E. Rescorla and A. Schiffman. The Secure HyperText Transfer Protocol. RFC 2660 (Experimental), August 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Scalable and Adaptive Internet Solutions (SAIL). http://www.sail-project.eu/.Google ScholarGoogle Scholar
  38. J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-end arguments in system design. ACM Trans. Comput. Syst., 2(4), Nov. 1984. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. A. Sharma, A. Venkataramani, and R. Sitaraman. Distributing content simplifies isp traffic engineering. In Proc. SIGMETRICS, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. K. Singh, H. J. Wang, A. Moshchuk, C. Jackson, and W. Lee. Practical end-to-end web content integrity. In Proc. WWW, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. D. Skeen. Vitria's publish-subscribe architecture: Publish-subscribe overview. http://www.vitria.com/, 1998.Google ScholarGoogle Scholar
  42. D. Smetters and V. Jacobson. Securing Network Content. Technical report, PARC, October 2009.Google ScholarGoogle Scholar
  43. N. Spring, R. Mahajan, D. Wetherall, and T. Anderson. Measuring ISP topologies with rocketfuel. IEEE/ACM Trans. Netw., 12(1), Feb. 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. S. Sun, L. Lannom, and B. Boesch. Handle System Overview. RFC 3650 (Informational), November 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. S. Thomson, T. Narten, and T. Jinmei. IPv6 Stateless Address Autoconfiguration. RFC 4862 (Draft Standard), September 2007.Google ScholarGoogle Scholar
  46. Tibco enterprise message service. http://www.tibco.com/.Google ScholarGoogle Scholar
  47. Your gadgets are slowly breaking the internet. http://www.technologyreview.com/news/509721/yourgadgets-are-slowly-breaking-the internet/.Google ScholarGoogle Scholar
  48. S. Traverso, K. Huguenin, I. Trestian, V. Erramilli, N. Laoutaris, and K. Papagiannaki. Tailgate: handling long-tail content with a little help from friends. In Proc. WWW, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. C. Tsilopoulos and G. Xylomenos. Supporting diverse traffic types in information centric networks. In Proc. SIGCOMM Workshop on ICN, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. G. Wachob, D. Reed, L. Chasen, W. Tan, and S. Churchill. Extensible resource identifier (XRI) resolution version 2.0. Committee Draft, 3, 2008.Google ScholarGoogle Scholar
  51. M. Walfish, H. Balakrishnan, and S. Shenker. Untangling the Web from DNS. In Proc. NSDI, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. A. Wolman, G. M. Voelker, N. Sharma, N. Cardwell, A. Karlin, and H. M. Levy. On the scale and performance of cooperative web proxy caching. In Proc. SOSP, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. The IETF Zeroconf Working Group, 2004. http://datatracker.ietf.org/wg/zeroconf/charter/.Google ScholarGoogle Scholar

Index Terms

  1. Less pain, most of the gain: incrementally deployable ICN

          Recommendations

          Reviews

          Karl Andersson

          Information-centric networking (ICN) is a promising research field. Most network users wish to fetch data, but do not care about connecting to a specific host. By decoupling the data a user wants to access from the delivery method, ICN promises several natural benefits. The authors of this paper discuss whether ICN provides significant benefits, and if so, whether the same benefits can be achieved in a more incrementally deployable fashion within the scope of currently available mechanisms. They point out that quantitative benefits of ICN include lower response times and simplified traffic engineering, while qualitative benefits include the ability to name content and verify content integrity. The authors present a reference design for an incrementally deployable ICN (idICN). This is "an application-layer ICN architecture that delivers most of the perceived benefits of ICN in a backwards-compatible fashion, without requiring any network layer support." Caching and qualitative aspects of ICN are implemented at the edge of the network. The cornerstone of the proposal is the enhancement of the hypertext transfer protocol (HTTP), providing support for proxy servers. Hosts can automatically discover and connect to a nearby HTTP server using zero configuration networking and the web proxy auto-discovery protocol (WPAD). The main contribution of this paper is the increased understanding of different features of ICN and the design possibilities for incremental approaches. The ideas are clearly presented and the argumentation by the authors is technically very sound. Online Computing Reviews Service

          Access critical reviews of Computing literature here

          Become a reviewer for Computing Reviews.

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in
          • Published in

            cover image ACM Conferences
            SIGCOMM '13: Proceedings of the ACM SIGCOMM 2013 conference on SIGCOMM
            August 2013
            580 pages
            ISBN:9781450320566
            DOI:10.1145/2486001
            • cover image ACM SIGCOMM Computer Communication Review
              ACM SIGCOMM Computer Communication Review  Volume 43, Issue 4
              October 2013
              595 pages
              ISSN:0146-4833
              DOI:10.1145/2534169
              Issue’s Table of Contents

            Copyright © 2013 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 27 August 2013

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • research-article

            Acceptance Rates

            SIGCOMM '13 Paper Acceptance Rate38of246submissions,15%Overall Acceptance Rate554of3,547submissions,16%

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader