skip to main content
research-article

Towards Energy-Fairness in Asynchronous Duty-Cycling Sensor Networks

Published:06 May 2014Publication History
Skip Abstract Section

Abstract

In this article, we investigate the problem of controlling node sleep intervals so as to achieve the min-max energy fairness in asynchronous duty-cycling sensor networks. We propose a mathematical model to describe the energy efficiency of such networks and observe that traditional sleep interval setting strategies, for example, operating sensor nodes with an identical sleep interval, or intuitive control heuristics, for example, greedily increasing sleep intervals of sensor nodes with high energy consumption rates, hardly perform well in practice. There is an urgent need to develop an efficient sleep interval control strategy for achieving fair and high energy efficiency. To this end, we theoretically formulate the Sleep Interval Control (SIC) problem and find out that it is a convex optimization problem. By utilizing the convex property, we decompose the original problem and propose a distributed algorithm, called GDSIC. In GDSIC, sensor nodes can tune sleep intervals through a local information exchange such that the maximum energy consumption rate of the network approaches to be minimized. The algorithm is self-adjustable to the traffic load variance and is able to serve as a unified framework for a variety of asynchronous duty-cycling MAC protocols. We implement our approach in a prototype system and test its feasibility and applicability on a 50-node testbed. We further conduct extensive trace-driven simulations to examine the efficiency and scalability of our algorithm with various settings.

References

  1. S. P. Boyd. 2004. Convex optimization. Cambridge University Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. M. Buettner, G. Yee, E. Anderson, and R. Han. 2006. X-MAC: A short preamble MAC protocol for duty-cycled wireless sensor networks. In Proceedings of ACM, Sensys. 307--320. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. G. W. Challen, J. Waterman, and M. Welsh. 2010. IDEA: Integrated Distributed Energy Awareness for wireless sensor networks. In Proceedings of ACM Mobisys. 35--48. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. J. Chen, W. Xu, S. He, Y. Sun, P. Thulasiramanz, and X. Shen. 2010. Utility-Based Asynchronous Flow Control Algorithm for Wireless Sensor Networks. IEEE J. Select. Areas Commun. 28, 7, 1116--1126. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. T. Dam and K. Langendoen. 2003. An adaptive energy-efficient MAC protocol for wireless sensor networks. In Proceedings of ACM SenSys. 171--180. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. W. Du, F. Mieyeville, D. Navarro, and I. O. Connor. 2011. IDEA1: A validated SystemC-based system-level design and simulation environment for wireless sensor networks. EURASIP J. Wirel. Commun. Netw. 2011, 1, 1--20.Google ScholarGoogle ScholarCross RefCross Ref
  7. P. Dutta, S. Dawson-Haggerty, Y. Chen, C. J. M. Liang, and A. Terzis. 2010. Design and evaluation of a versatile and efficient receiver-initiated link layer for low-power wireless. In Proceedings of ACM SenSys. 1--14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. P. Dutta, J. Taneja, J. Jeong, X. Jiang, and D. Culler. 2008. A building block approach to sensornet systems. In Proceedings of ACM SenSys. 267--280. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. A. EI-Hoiydi and J. Decotignie. 2005. Low power downlink MAC protocols for infrastructure wireless sensor networks. ACM Mobile Netw. Appl. 10, 5, 675--690. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. O. Gnawali, R. Fonseca, K. Jamieson, D. Moss, and P. Levis. 2009. Collection tree protocol. In Proceedings of ACM SenSys. 1--14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Y. Gu and T. He. 2007. Data Forwarding in extremely low duty-cycle sensor networks with unreliable communication links. In Proceedings of ACM SenSys. 321--334. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Y. Gu, T. Zhu, and T. He. 2009. ESC: Energy synchronized communication in sustainable sensor networks. In Proceedings of IEEE ICNP. 52--62. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. S. Guo, Y. Gu, B. Jiang, and T. He. 2009. Opportunistic flooding in low-duty-cycle wireless sensor networks with unreliable links. In Proceedings of ACM MobiCom. 133--144. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. W. Hu, N. Bulusu, C. T. Chou, S. Jha, A. Taylor, and V. N. Tran. 2009. Design and evaluation of a hybrid sensor network for cane toad monitoring. ACM Trans. Sens. Netw. 5, 1, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. K. Langendoen and A. Meier. 2010. Analyzing MAC protocols for low data-rate applications. ACM Trans. Sensor Netw. 7, 2, 19. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Z. Li, M. Li, and Y. Liu. 2012. Towards energy-fairness in asynchronous duty-cycling sensor networks. In Proceedings IEEE Infocom. 801--809.Google ScholarGoogle Scholar
  17. H. Lin, M. Lu, N. Milosavljevic, J. Gao, and L. Guibas. 2008. Composable information gradients in wireless sensor networks. In Proceedings of ACM/IEEE IPSN. 121--132. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. S. Liu, K.-W. Fan, and P. Sinha. 2009. CMAC: An energy efficient MAC layer protocol using convergent packet forwarding for wireless sensor networks. ACM Trans. Sens. Netw. 5, 29. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Y. Liu, Y. He, M. Li, et al. 2011a. Does wireless sensor network scale? A measurement study on GreenOrbs. In Proceedings of IEEE Infocom. 873--881.Google ScholarGoogle Scholar
  20. Y. Liu, Y. Zhu, Lionel M. Ni, and G. Xue. 2011b. A reliability-oriented transmission service in wireless sensor networks. IEEE Trans. Parall. Distrib. Syst. 22, 2100--2107. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Q. Ma, K. Liu, X. Miao, and Y. Liu. 2011. Opportunistic concurrency: A MAC protocol for wireless sensor networks. In Proceedings of IEEE DCOSS.Google ScholarGoogle Scholar
  22. C. J. Merlin and W. B. Heinzelman. 2009. Schedule adaptation of low-power-listening protocols for wireless sensor networks. IEEE Trans. Mobile Comput. 9, 5 (2009), 672--685. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. P. Park, C. Fischione, and K. H. Johansson. 2010. Adaptive IEEE 802.15. 4 protocol for energy efficient, reliable and timely communications. In Proceedings of ACM/IEEE IPSN. 327--338. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. J. Polastre, J. Hill, and D. Culler. 2004. Versatile low power media access for wireless sensor networks. In Proceedings of ACM SenSys. 95--107. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. S. Rangwala, R. Gummadi, R. Govindan, and K. Psounis. 2006. Interference-aware FaireRate control in wireless sensor networks. In Proceedings of ACM SIGCOMM. 63--74. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Y. Sun, O. Gurewitz, and D. Johnson. 2008. RI-MAC: A receiver-initiated asynchronous duty cycle MAC protocol for dynamic traffic loads in wireless sensor networks. In Proceedings of ACM SenSys. 1--14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. L. Tang, Y. Sun, O. Gurewitz, and D. B. Johnson. 2011. PW-MAC: An Energy-Efficient Predictive-Wakeup MAC Protocol for Wireless Sensor Networks. In Proceedings of IEEE Infocom. 1305--1313.Google ScholarGoogle Scholar
  28. S. J. Tang, X. Y. Li, X. Shen, J. Zhang, G. Dai, and S. K. Das. 2011. Cool: On coverage with solar-powered sensors. In Proceedings of IEEE ICDCS. 488--496. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. TelosB. 2004. (2004). http://www2.ece.ohio-state.edu/∼bibyk/ee582/telosMote.pdf.Google ScholarGoogle Scholar
  30. L. Wang and W. Liu. 2011. Navigability and reachability index for emergency navigation systems using wireless sensor networks. Tsing. Scie. Tech. 16, 6, 657--668.Google ScholarGoogle ScholarCross RefCross Ref
  31. X. Wang, L. Fu, X. Tian, Y. Bei, Q. Peng, X. Gan, H. Yu, and J. Liu. 2012. Converge-cast: On the capacity and delay tradeoffs. IEEE Trans. Mobile Comput. 11, 970--982. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. X. Wang, X. Wang, G. Xing, and Y. Yao. 2010. Dynamic duty cycle control for end-to-end delay guarantees in wireless sensor networks. In Proceedings of IEEE IWQoS. 1--9.Google ScholarGoogle Scholar
  33. Y. Wang, Y. He, X. Mao, Y. Liu, Z. Huang, and X. Li. 2012. Exploiting constructive interference for scalable flooding in Wirelessnetworks. In Proceedings of IEEE Infocom. 2104--2112.Google ScholarGoogle Scholar
  34. G. Werner-Allen, S. Dawson-Haggerty, and M. Welsh. 2008. Lance: Optimizing high-resolution signal collection in wireless sensor networks. In Proceedings of ACM SenSys. 169--182. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. W. Ye, J. Heidemann, and D. Estrin. 2002. An energy-efficient MAC protocol for Wireless Sensor Networks. In Proceedings of IEEE Infocom. 1567--1576.Google ScholarGoogle Scholar
  36. W. Ye, F. Silva, and J. Heidemann. 2006. Ultra-Low Duty Cycle MAC with schedulled Channel Polling. In Proceedings of ACM SenSys. 321--334. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. T. Zhu, Y. Gu, T. He, and Z. L. Zhang. 2010. eShare: A capacitor-driven energy storage and sharing network for long-term operation. In Proceedings of ACM SenSys. 239--252. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. T. Zhu, Z. Zhong, Y. Gu, T. He, and Z. Zhang. 2009. Leakage-aware energy synchronization for wireless sensor networks. In Proceedings of ACM MobiSys. 319--332. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Y. Zhu. 2012. Statistically bounding detection latency in low-duty-cycled sensor networks. Int. J. Distrib. Sens. Netw.Google ScholarGoogle Scholar
  40. Y. Zhu, Y. Liu, and L. M. Ni. 2011. Optimizing event detection in low duty-cycled sensor networks. Wireless Netw. (2011), 1--15. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Towards Energy-Fairness in Asynchronous Duty-Cycling Sensor Networks

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Sensor Networks
        ACM Transactions on Sensor Networks  Volume 10, Issue 3
        April 2014
        509 pages
        ISSN:1550-4859
        EISSN:1550-4867
        DOI:10.1145/2619982
        Issue’s Table of Contents

        Copyright © 2014 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 6 May 2014
        • Accepted: 1 May 2013
        • Revised: 1 April 2012
        • Received: 1 January 2012
        Published in tosn Volume 10, Issue 3

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article
        • Research
        • Refereed

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader