skip to main content
10.1145/2506583.2508968acmconferencesArticle/Chapter ViewAbstractPublication PagesbcbConference Proceedingsconference-collections
tutorial

Global Network Alignment In The Context Of Aging

Authors Info & Claims
Published:22 September 2013Publication History

ABSTRACT

Analogous to sequence alignment, network alignment (NA) can be used to transfer biological knowledge across species between conserved network regions. NA faces two algorithmic challenges: 1) Which cost function to use to capture "similarities" between nodes in different networks? 2) Which alignment strategy to use to rapidly identify "high-scoring" alignments from all possible alignments? We "break down" existing state-of-the-art methods that use both different cost functions and different alignment strategies to evaluate each combination of their cost functions and alignment strategies. We find that a combination of the cost function of one method and the alignment strategy of another method beats the existing methods. Hence, we propose this combination as a novel superior NA method. Then, since human aging is hard to study experimentally due to long lifespan, we use NA to transfer aging-related knowledge from well annotated model species to poorly annotated human between aligned network regions. By doing so, we produce novel aging-related information, which complements currently available information about aging that has been obtained mainly by sequence alignment, especially in human. To our knowledge, we are the first to use NA to learn more about aging.

References

  1. S. Altschul, W. Gish, W. Miller, and D. Lipman. Basic local alignment search tool. Journal of Molecular Biology, 215:403--410, 1990.Google ScholarGoogle ScholarCross RefCross Ref
  2. J. Berg and M. Lassig. Local graph alignment and motif search in biological networks. Proceedings of the National Academy of Sciences, 101:14689--14694, 2004.Google ScholarGoogle ScholarCross RefCross Ref
  3. J. Berg and M. Lassig. Cross-species analysis of biological networks by Bayesian alignment. Proceedings of the National Academy of Sciences, 103(29):10967--10972, 2006.Google ScholarGoogle ScholarCross RefCross Ref
  4. B. J. Breitkreutz et al. The BioGRID Interaction Database: 2008 update. Nucleic Acids Research, 36:D637--D640, 2008.Google ScholarGoogle ScholarCross RefCross Ref
  5. The Gene Ontology Consortium. Gene ontology: tool for the unification of biology. Nature Genetics, 25:25--29, 2000.Google ScholarGoogle ScholarCross RefCross Ref
  6. J. de Magalhães et al. The Human Ageing Genomic Resources: online databases and tools for biogerontologists. Aging Cell, 8(1):65--72, 2009.Google ScholarGoogle ScholarCross RefCross Ref
  7. F. E. Faisal and T. Milenković. Dynamic networks reveal key players in aging. arXiv:1307.3388 {cs.CE}, 2013.Google ScholarGoogle Scholar
  8. J. Flannick, A. Novak, S. Balaji, H. Harley, and S. Batzglou. Graemlin: General and robust alignment of multiple large interaction networks. Genome Research, 16(9):1169--1181, 2006.Google ScholarGoogle ScholarCross RefCross Ref
  9. J. Flannick, A. Novak, C. Do, B. Srinivasan, and S. Batzoglou. Automatic parameter learning for multiple network alignment. In Research in Computational Molecular Biology (RECOMB), pages 214--231, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. D. Gautheret, F. Major, and R. Cedergren. Pattern searching/alignment with RNA primary and secondary structures: an effective descriptor for tRNA. Computer Applications in the Biosciences, 6(4):325--331, 1990.Google ScholarGoogle Scholar
  11. X. Guo and A. Hartemink. Domain-oriented edge-based alignment of protein interaction networks. Bioinformatics, 25(12):i240--1246, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. H. Ho, T. Milenković, V. Memišević, J. Aruri, N. Pržulj, and A. Ganesan. Protein interaction network uncovers melanogenesis regulatory network components within functional genomics datasets. BMC Systems Biology, 4(84), 2010.Google ScholarGoogle Scholar
  13. D. W. Huang, B. T. Sherman, R. Stephens, M. W. Baseler, C. Lane, and R. A. Lempicki. DAVID gene ID conversion tool. Bioinformatics, 2(10):428--430, 2008.Google ScholarGoogle Scholar
  14. B. Kelley, Y. Bingbing, F. Lewitter, R. Sharan, B. Stockwell, and T. Ideker. PathBLAST: a tool for alignment of protein interaction networks. Nucleic Acids Research, 32:83--88, 2004.Google ScholarGoogle ScholarCross RefCross Ref
  15. G. Klau. A new graph-based method for pairwise global network alignment. BMC Bioinformatics, 10(Suppl 1):S59, 2009.Google ScholarGoogle ScholarCross RefCross Ref
  16. M. Koyuturk, Y. Kim, U. Topkara, S. Subramaniam, W. Szpankowski, and A. Grama. Pairwise alignment of protein interaction networks. Journal of Computational Biology, 13(2), 2006.Google ScholarGoogle ScholarCross RefCross Ref
  17. O. Kuchaiev, T. Milenković, V. Memišević, W. Hayes, and N. Pržulj. Topological network alignment uncovers biological function and phylogeny. Journal of the Royal Society Interface, 7:1341--1354, 2010.Google ScholarGoogle ScholarCross RefCross Ref
  18. O. Kuchaiev and N. Pržulj. Integrative network alignment reveals large regions of global network similarity in yeast and human. Bioinformatics, 27(10):1390--1396, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Z. Liang, M. Xu, M. Teng, and L. Niu. NetAlign: a web-based tool for comparison of protein interaction networks. Bioinformatics, 22(17):2175--2177, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. C. Liao, K. Lu, M. Baym, R. Singh, and B. Berger. IsoRankN: spectral methods for global alignment of multiple protein networks. Bioinformatics, 25(12):i253--258, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. T. Lu et al. Gene regulation and DNA damage in the ageing human brain. Nature, 429(6994):883--891, 2004.Google ScholarGoogle ScholarCross RefCross Ref
  22. V. Memisević, T. Milenković, and N. Pržulj. Complementarity of network and sequence information in homologous proteins. Journal of Integrative Bioinformatics, 7(3):135, 2010.Google ScholarGoogle ScholarCross RefCross Ref
  23. V. Memišević and N. Pržulj. C-GRAAL: Common-neighbors-based global graph alignment of biological networks. Integrative Biology, 4(7):734--743, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  24. T. Milenković, W. Ng, W. Hayes, and N. Pržulj. Optimal network alignment with graphlet degree vectors. Cancer Informatics, 9:121--137, 2010.Google ScholarGoogle ScholarCross RefCross Ref
  25. T. Milenković and N. Pržulj. Uncovering biological network function via graphlet degree signatures. Cancer Informatics, 6:257--273, 2008.Google ScholarGoogle ScholarCross RefCross Ref
  26. H. Motulsky. Intuitive Biostatistics. Oxford University Press, 1 edition, 1995.Google ScholarGoogle Scholar
  27. A. Narayanan, E. Shi, and B. Rubinstein. Link prediction by de-anonymization: How we won the Kaggle social network challenge. In Proceedings of the 2011 International Joint Conference on Neural Networks (IJCNN), pages 1825--1834. IEEE, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  28. R. Patro and C. Kingsford. Global network alignment using multiscale spectral signatures. Bioinformatics, 28(23):3105--3114, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. N. Pržulj, D. G. Corneil, and I. Jurisica. Modeling interactome: Scale-free or geometric? Bioinformatics, 20(18):3508--3515, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. R. Sharan and T. Ideker. Modeling cellular machinery through biological network comparison. Nature Biotechnology, 24(4):427--433, 2006.Google ScholarGoogle ScholarCross RefCross Ref
  31. R. Sharan et al. Conserved patterns of protein interaction in multiple species. Proceedings of the National Academy of Sciences, 102(6):1974--1979, 2005.Google ScholarGoogle ScholarCross RefCross Ref
  32. R. Sharan, I. Ulitsky, and R. Shamir. Network-based prediction of protein function. Molecular Systems Biology, 3(88):1--13, 2007.Google ScholarGoogle Scholar
  33. R. Singh, J. Xu, and B. Berger. Pairwise global alignment of protein interaction networks by matching neighborhood topology. In Research in Computational Molecular Biology (RECOMB), pages 16--31. Springer, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. R. Singh, J. Xu, and B. Berger. Global alignment of multiple protein interaction networks. Proceedings of Pacific Symposium on Biocomputing, pages 303--314, 2008.Google ScholarGoogle Scholar
  35. R. Solava, R. Michaels, and T. Milenković. Graphlet-based edge clustering reveals pathogen-interacting proteins. Bioinformatics, 18(28):i480--i486, 2012. Also, in Proceedings of the 11th European Conference on Computational Biology (ECCB), Basel, Switzerland, September 9-12, 2012 (acceptance rate: 14%). Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. R. Solava and T. Milenković. Revealing missing parts of the interactome. arXiv:1307.3329 {q-bio.MN}, 2013.Google ScholarGoogle Scholar
  37. R. Tacutu, A. Budovsky, and V. Fraifeld. The netage database: a compendium of networks for longevity, age-related diseases and associated processes. Biogerontology, 11(4), 2010.Google ScholarGoogle Scholar
  38. K. Venkatesan et al. An empirical framework for binary interactome mapping. Nature Methods, 6(1):83--90, 2009.Google ScholarGoogle ScholarCross RefCross Ref
  39. D. West. Introduction to Graph Theory. Prentice Hall, Upper Saddle River, NJ, 2nd edition, 2001.Google ScholarGoogle Scholar
  40. D. Wieser, I. Papatheodorou, M. Ziehm, and J. Thornton. Computational biology for ageing. Philosophical Transactions of the Royal Society B: Biological Sciences, 366(1561):51--63, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  41. M. Yandell and W. Majoros. Genomics and Natural Language Processing. Nature Reviews Genetics, 3(8):601--610, 2002.Google ScholarGoogle ScholarCross RefCross Ref
  42. M. Zaslavskiy, F. Bach, and J. P. Vert. Global alignment of protein-protein interaction networks by graph matching methods. Bioinformatics, 25(12):i259--i267, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Global Network Alignment In The Context Of Aging

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        BCB'13: Proceedings of the International Conference on Bioinformatics, Computational Biology and Biomedical Informatics
        September 2013
        987 pages
        ISBN:9781450324342
        DOI:10.1145/2506583

        Copyright © 2013 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 22 September 2013

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • tutorial
        • Research
        • Refereed limited

        Acceptance Rates

        BCB'13 Paper Acceptance Rate43of148submissions,29%Overall Acceptance Rate254of885submissions,29%

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader