skip to main content
research-article

Most Tensor Problems Are NP-Hard

Published:01 November 2013Publication History
Skip Abstract Section

Abstract

We prove that multilinear (tensor) analogues of many efficiently computable problems in numerical linear algebra are NP-hard. Our list includes: determining the feasibility of a system of bilinear equations, deciding whether a 3-tensor possesses a given eigenvalue, singular value, or spectral norm; approximating an eigenvalue, eigenvector, singular vector, or the spectral norm; and determining the rank or best rank-1 approximation of a 3-tensor. Furthermore, we show that restricting these problems to symmetric tensors does not alleviate their NP-hardness. We also explain how deciding nonnegative definiteness of a symmetric 4-tensor is NP-hard and how computing the combinatorial hyperdeterminant is NP-, #P-, and VNP-hard.

References

  1. A. A. Ahmadi, A. Olshevsky, P. A. Parrilo, and J. N. Tsitsiklis. 2013. NP-hardness of deciding convexity of quartic polynomials and related problems. Math. Program. Ser. A 137, 1--2, 453--476.Google ScholarGoogle ScholarCross RefCross Ref
  2. M. Aigner. 1995. Turán’s graph theorem. Amer. Math. Monthly 102, 9, 808--816.Google ScholarGoogle Scholar
  3. E. S. Allman and J. A. Rhodes. 2008. Phylogenetic ideals and varieties for the general Markov model. Adv. Appl. Math. 40, 2, 127--148.Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. N. Alon and A. Naor. 2006. Approximating the cut-norm via Grothendieck’s inequality. SIAM J. Comput. 35, 4, 787--803. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. S. Arora, R. Ge, R. Kannan, and A. Moitra. 2012. Computing a nonnegative matrix factorization --- provably. In Proceedings of the ACM Symposium on Theory of Computing (STOC). 145--162. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. C. Bachoc and F. Vallentin, 2008. New upper bounds for kissing numbers from semidefinite programming. J. Amer. Math. Soc. 21, 3, 909--924.Google ScholarGoogle ScholarCross RefCross Ref
  7. C. Bachoc, G. Nebe, F. M. de Oliveira Filho, and F. Vallentin. 2009. Lower bounds for measurable chromatic numbers. Geom. Funct. Anal. 19, 3, 645--661.Google ScholarGoogle ScholarCross RefCross Ref
  8. S. Banach. 1938. Über homogene polynome in (L2). Studia Math. 7, 1, 36--44.Google ScholarGoogle ScholarCross RefCross Ref
  9. A. I. Barvinok, 1993. Feasibility testing for systems of real quadratic equations. Discrete Comput. Geom. 10, 1, 1--13.Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. A. I. Barvinok. 1995. New algorithms for linear k-matroid intersection and matroid k-parity problems. Math. Prog. 69, 3, 449--470. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. D. Bayer. 1982. The division algorithm and the Hilbert scheme. Ph.D. thesis, Department of Mathematics, Harvard University. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. C. Beltrán and L. M. Pardo. 2009. Efficient polynomial system-solving by numerical methods. J. Fixed Point Theory Appl. 6, 1, 63--85.Google ScholarGoogle ScholarCross RefCross Ref
  13. E. Bernstein and U. Vazirani. 1997. Quantum complexity theory. SIAM J. Comput. 26, 5, 1411--1473. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. G. Beylkin and M. J. Mohlenkamp. 2002. Numerical operator calculus in higher dimensions. Proc. Natl. Acad. Sci. 99, 16, 10246--10251.Google ScholarGoogle ScholarCross RefCross Ref
  15. L. Blum, M. Shub, and S. Smale. 1989. On a theory of computation and complexity over the real numbers. Bull. Amer. Math. Soc. 21, 1, 1--46.Google ScholarGoogle ScholarCross RefCross Ref
  16. L. Blum, F. Cucker, M. Shub, and S. Smale. 1998. Complexity and Real Computation. Springer-Verlag, New York. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. J. Bochnak, M. Coste, and M. F. Roy. 1998. Real Algebraic Geometry 2nd Ed. Ergebnisse der Mathematik und ihrer Grenzgebiete, 36, Springer-Verlag, Berlin.Google ScholarGoogle Scholar
  18. J. Briët, F. M. de Oliveira Filho, and F. Vallentin. 2010a. The positive semidefinite Grothendieck problem with rank constraint. In Automata, Languages and Programming, Lecture Notes in Computer Science, vol. 6198, S. Abramsky et al. Eds., Springer-Verlag, Berlin, 31--42. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. J. Briët, F. M. de Oliveira Filho, and F. Vallentin. 2010b. Grothendieck inequalities for semidefinite programs with rank constraint. Preprint, http://arxiv.org/abs/1011.1754.Google ScholarGoogle Scholar
  20. S. C. Brubaker and S. S. Vempala. 2009. Random tensors and planted cliques. In Proceedings of APPROX and RANDOM’09, Lecture Notes in Computer Science, vol. 5687, Dinur et al. Eds., Springer-Verlag, Berlin. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. B. Buchberger. 1970. Ein algorithmisches kriterium für die Lösbarkeit eines algebraischen Gleichungssystems. Aequationes Math. 4, 3, 374--383.Google ScholarGoogle ScholarCross RefCross Ref
  22. P. Bürgisser. 2000. Completeness and reduction in algebraic complexity theory. In Algorithms and Computations in Mathematics, vol. 7, Springer-Verlag, Berlin.Google ScholarGoogle Scholar
  23. P. Bürgisser, M. Clausen, and M. A. Shokrollahi. 1996. Algebraic Complexity Theory. Grundlehren der mathematischen Wissenschaften, vol. 315, Springer-Verlag, Berlin. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. D. A. Cartwright and B. Sturmfels. 2013. The number of eigenvalues of a tensor. Linear Algebra Appl. 438, 2, 942--952.Google ScholarGoogle ScholarCross RefCross Ref
  25. D. A. Cartwright, S. M. Brady, D. A. Orlando, B. Sturmfels, and P. N. Benfey. 2009. Reconstructing spatiotemporal gene expression data from partial observations. Bioinform. 25, 19, 2581--2587. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. A. Cayley. 1845. On the theory of linear transformation. Cambridge Math. J. 4, 193--209.Google ScholarGoogle Scholar
  27. S. Cohen and C. Tomasi. 1997. Systems of bilinear equations. Tech. rep. 97-1588, Department of Computer Science, Stanford University. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. T. F. Coleman and A. Pothen. 1986. The null space problem I: Complexity. SIAM J. Alg. Disc. Meth. 7, 4, 527--537. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. P. Comon. 1994. Independent component analysis: A new concept? Signal Process. 36, 3, 287--314. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. P. Comon. 2004. Blind identification and source separation in 2 × 3 under-determined mixtures. IEEE Trans. Signal Process. 52, 1, 11--22. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. P. Comon, G. H. Golub, L.-H. Lim, and B. Mourrain. 2008. Symmetric tensors and symmetric tensor rank. SIAM J. Matrix Anal. Appl. 30, 3, 1254--1279. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. S. Cook. 1971. The complexity of theorem proving procedures. In Proceedings of the ACM Symposium on the Theory of Computing (STOC). 151--158. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. R. Coppi and S. Bolasco, Eds. 1989. Multiway Data Analysis. Elsevier Science, Amsterdam, The Netherlands. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. N. Courtois, L. Goubin, W. Meier, and J.-D. Tacier. 2002. Solving underdefined systems of multivariate quadratic equations. In Proceedings of the Symposium on Public Key Cryptography (PKC’02), Lecture Notes in Computer Science, vol. 2274, D. Naccache and P. Paillier Eds., Springer-Verlag, Berlin. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. D. A. Cox, J. B. Little, and D. O’Shea. 2005. Using Algebraic Geometry 2nd Ed. Springer-Verlag, New York.Google ScholarGoogle Scholar
  36. D. A. Cox, J. B. Little, and D. O’Shea. 2007. Ideals, Varieties, and Algorithms 3rd Ed. Springer-Verlag, New York, NY. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. M. Davis, H. Putnam, and J. Robinson. 1961. The decision problem for exponential diophantine equations. Ann. Math. 74, 3, 425--436.Google ScholarGoogle ScholarCross RefCross Ref
  38. M. Davis, Y. Matijasevich, and J. Robinson. 1976. Diophantine equations: Positive aspects of a negative solution. In Mathematical Developments Arising from Hilbert Problems Proceedings of Symposia in Pure Mathematics, vol. XXVIII, AMS, Providence.Google ScholarGoogle Scholar
  39. A. De, P. P. Kurur, C. Saha, and R. Saptharishi. 2008. Fast integer multiplication using modular arithmetic. In Proceedings of the ACM Symposium on the Theory of Computing (STOC). 499--506. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. E. De Klerk. 2008. The complexity of optimizing over a simplex, hypercube or sphere: A short survey. Cent. Eur. J. Oper. Res. 16, 2, 111--125.Google ScholarGoogle ScholarCross RefCross Ref
  41. E. De Klerk and D. V. Pasechnik. 2002. Approximation of the stability number of a graph via copositive programming. SIAM J. Optim. 12, 4, 875--892. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. W. F. De La Vega, R. Kannan, M. Karpinski, and S. Vempala. 2005. Tensor decomposition and approximation schemes for constraint satisfaction problems. In Proceedings of the ACM Symposium on Theory of Computing (STOC). 747--754. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. J. A. De Loera. 1995. Gröbner bases and graph colorings. Beiträge Alg. Geom. 36, 1, 89--96.Google ScholarGoogle Scholar
  44. J. A. De Loera, J. Lee, P. N. Malkin, and S. Margulies. 2008. Hilbert’s nullstellensatz and an algorithm for proving combinatorial infeasibility. In Proceedings of the International Symposium on Symbolic Algebra Computing (ISSAC). 197--206. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. V. De Silva and L.-H. Lim. 2008. Tensor rank and the ill-posedness of the best low-rank approximation problem. SIAM J. Matrix Anal. Appl. 30, 3, 1084--1127. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. D. Deutsch. 1985. Quantum theory, the Church-Turing principle and the universal quantum computer. Proc. Roy. Soc. London Ser. A 400, 1818, 97--117.Google ScholarGoogle ScholarCross RefCross Ref
  47. P. J. C. Dickinson and L. Gijben. 2012. On the computational complexity of membership problems for the completely positive cone and its dual. Preprint http://www.optimization-online.org/DB_HTML/2011/05/3041.html.Google ScholarGoogle Scholar
  48. J. Edmonds. 1967. Systems of distinct representatives and linear algebra. J. Res. Nat. Bur. Standards 71B, 4, 241--245.Google ScholarGoogle ScholarCross RefCross Ref
  49. L. Fortnow. 2009. The status of the P versus NP problem. Commun. ACM 52, 9, 78--86. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. L. Fortnow and J. Rogers. 1999. Complexity limitations on quantum computation. J. Comput. System Sci. 59, 2, 240--252. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. P. J. Freitas, S. Friedland, and G. Porta. 2012. Upper bounds on the magnitude of solutions of certain linear systems with integer coefficients. Electron. J. Linear Alg. 24, 113--125.Google ScholarGoogle Scholar
  52. J. Friedman. 1991. The spectra of infinite hypertrees. SIAM J. Comput. 20, 5, 951--961. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. J. Friedman and A. Wigderson. 1995. On the second eigenvalue of hypergraphs. Combinatorica 15, 1, 43--65.Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. M. Fürer. 2007. Faster integer multiplication. In Proceedings of the ACM Symposium on Theory of Computing (STOC). 57--66. Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. I. M. Gelfand, M. M. Kapranov, and A. V. Zelevinsky. 1992. Hyperdeterminants. Adv. Math. 96, 2, 226--263.Google ScholarGoogle ScholarCross RefCross Ref
  56. I. M. Gelfand, M. M. Kapranov, and A. V. Zelevinsky. 1994. Discriminants, Resultants, and Multidimensional Determinants. Birkhäuser Publishing, Boston, MA.Google ScholarGoogle Scholar
  57. M. X. Goemans and D. P. Williamson. 1995. Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. J. ACM 42, 6, 1115--1145. Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. G. H. Golub and W. Kahan. 1965. Calculating the singular values and pseudo-inverse of a matrix. J. Soc. Indust. Appl. Math. Ser. B2, 205--224.Google ScholarGoogle ScholarCross RefCross Ref
  59. G. H. Golub and C. Reinsch. 1970. Singular value decomposition and least squares solutions. Numer. Math. 14, 5, 403--420.Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. B. Grenet, P. Koiran, and N. Portier. 2010. The multivariate resultant is NP-hard in any characteristic. In Mathematical Foundations of Computer Science (MFCS), Lecture Notes in Computer Science, vol. 6281, P. Hliněný and A. Kučera Eds., Springer-Verlag, Berlin. Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. L. Gurvits. 2005. On the complexity of mixed discriminants and related problems. In Mathematical Foundations of Computer Science, Lecture Notes in Computer Science, vol. 3618, Springer, Berlin, 447--458. Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. V. Halava, T. Harju, and M. Hirvensalo. 2007. Undecidability bounds for integer matrices using Claus instances. Internat. J. Found. Comput. Sci. 18, 5, 931--948.Google ScholarGoogle ScholarCross RefCross Ref
  63. D. Haskell, A. Pillay, and C. Steinhorn, Eds. 2000. Model Theory, Algebra, and Geometry. Mathematical Sciences Research Institute Publications, vol. 39, Cambridge University Press, Cambridge.Google ScholarGoogle Scholar
  64. J. Håstad. 1990. Tensor rank is NP-complete. J. Algor. 11, 4, 644--654. Google ScholarGoogle ScholarDigital LibraryDigital Library
  65. J. Håstad. 1999. Clique is hard to approximate within n1−ε. Acta Math. 182, 1, 105--142.Google ScholarGoogle ScholarCross RefCross Ref
  66. S. He, Z. Li, and S. Zhang. 2010. Approximation algorithms for homogeneous polynomial optimization with quadratic constraints. Math. Prog. Ser. B 125, 2, 353--383. Google ScholarGoogle ScholarDigital LibraryDigital Library
  67. J. M. Hendrickx and A. Olshevsky. 2010. Matrix p-norms are NP-hard to approximate if p ≠ 1, 2, ∞. SIAM J. Matrix Anal. Appl. 31, 5, 2802--2812. Google ScholarGoogle ScholarDigital LibraryDigital Library
  68. N. J. Higham. 2002. Accuracy and Stability of Numerical Algorithms 2nd Ed. SIAM, Philadelphia, PA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  69. N. J. Higham. 2008. Functions of Matrices: Theory and Computation. SIAM, Philadelphia, PA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  70. D. Hilbert. 1902. Mathematical problems. Bull. Amer. Math. Soc. 8, 10, 437--479.Google ScholarGoogle ScholarCross RefCross Ref
  71. S. Hill and W. K. Wootters. 1997. Entanglement of a pair of quantum bits. Phys. Rev. Lett. 78, 26, 5022--5025.Google ScholarGoogle ScholarCross RefCross Ref
  72. C. Hillar and T. Windfeldt. 2008. Algebraic characterization of uniquely vertex colorable graphs. J. Combin. Theory Ser. B 98, 2, 400--414. Google ScholarGoogle ScholarDigital LibraryDigital Library
  73. F. L. Hitchcock. 1927a. The expression of a tensor or a polyadic as a sum of products. J. Math. Phys. 6, 1, 164--189.Google ScholarGoogle ScholarCross RefCross Ref
  74. F. L. Hitchcock. 1927b. Multiple invariants and generalized rank of a p-way matrix or tensor. J. Math. Phys. 7, 1, 39--79.Google ScholarGoogle ScholarCross RefCross Ref
  75. D. S. Hochbaum, Ed. 1997. Approximation Algorithms for NP-Hard Problems. PWS Publishing, Boston, MA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  76. D. S. Hochbaum and J. G. Shanthikumar. 1990. Convex separable optimization is not much harder than linear optimization. J. ACM 37, 4, 843--862. Google ScholarGoogle ScholarDigital LibraryDigital Library
  77. P. Huggins, B. Sturmfels, J. Yu, and D. S. Yuster. 2008. The hyperdeterminant and triangulations of the 4-cube. Math. Comp. 77, 263, 1653--1679.Google ScholarGoogle Scholar
  78. J. P. Jones. 1982. Universal Diophantine equation. J. Symb. Logic 47, 3, 549--571.Google ScholarGoogle ScholarCross RefCross Ref
  79. J. P. Jones and Y. V. Matijasevič. 1984. Register machine proof of the theorem on exponential diophantine representation of enumerable sets. J. Symb. Logic 49, 3, 818--829.Google ScholarGoogle ScholarCross RefCross Ref
  80. W. Kahan. 1997. IEEE Standard 754 for Binary Floating-Point Arithmetic. http://www.cs.berkeley.edu/~wkahan/ieee754status/ieee754.ps, Berkeley, CA.Google ScholarGoogle Scholar
  81. R. M. Karp. 1972. Reducibility among combinatorial problems. In Complexity of Computer Computations, R. E. Miller and J. W. Thatcher Eds., Plenum, New York.Google ScholarGoogle Scholar
  82. L. G. Khachiyan. 1979. A polynomial algorithm in linear programming. Dokl. Akad. Nauk SSSR 244, 5, 1093--1096. (English translation in Soviet Math. Dokl. 20, 1, 191--194).Google ScholarGoogle Scholar
  83. S. Khot, G. Kindler, E. Mossel, and R. O’Donnell. 2007. Optimal inapproximability results for max-cut and other 2-variable CSPs? SIAM J. Comput. 37, 1, 319--357. Google ScholarGoogle ScholarDigital LibraryDigital Library
  84. D. Kressner. 2013. Bivariate matrix functions. Oper. Matrices, to appear.Google ScholarGoogle Scholar
  85. D. E. Knuth. 1974a. A terminology proposal. SIGACT News 6, 1, 12--18. Google ScholarGoogle ScholarDigital LibraryDigital Library
  86. D. E. Knuth. 1974b. Postscript about NP-hard problems. SIGACT News 6, 2, 15--16. Google ScholarGoogle ScholarDigital LibraryDigital Library
  87. D. E. Knuth. 1998. The Art of Computer Programming, 2: Seminumerical Algorithms 3rd Ed. Addision-Wesley, Reading, MA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  88. E. Kofidis and P. A. Regalia. 2001/2002. On the best rank-1 approximation of higher-order supersymmetric tensors. SIAM J. Matrix Anal. Appl. 23, 3, 863--884. Google ScholarGoogle ScholarDigital LibraryDigital Library
  89. J. M. Landsberg. 2012. Tensors: Geometry and Applications. AMS, Providence, RI.Google ScholarGoogle Scholar
  90. L. A. Levin. 1973. Universal sequential search problems. Probl. Inf. Transm. 9, 3, 265--266.Google ScholarGoogle Scholar
  91. L.-H. Lim. 2005. Singular values and eigenvalues of tensors: A variational approach. In Proceedings of the IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Process (CAMSAP). 129--132.Google ScholarGoogle Scholar
  92. L.-H. Lim. 2013. Tensors and hypermatrices. In Handbook of Linear Algebra 2nd Ed. L. Hogben Ed., CRC Press, Boca Raton, FL.Google ScholarGoogle Scholar
  93. L.-H. Lim and T. Schultz. 2013. Moment tensors and high angular resolution diffusion imaging. Preprint.Google ScholarGoogle Scholar
  94. L. Lovász. 1994. Stable sets and polynomials. Disc. Math. 124, 1--3, 137--153. Google ScholarGoogle ScholarDigital LibraryDigital Library
  95. Y. V. Matijasevič. 1970. The Diophantineness of enumerable sets. Dokl. Akad. Nauk SSSR 191, 2, 279--282, (English translation in Soviet Math. Dokl. 11, 2, 354--358.)Google ScholarGoogle Scholar
  96. Y. V. Matijasevič. 1993. Hilbert’s Tenth Problem. MIT Press, Cambridge, MA.Google ScholarGoogle Scholar
  97. A. Miyake and M. Wadati. 2002. Multipartite entanglement and hyperdeterminants. Quant. Inf. Comput. 2, 540--555. Google ScholarGoogle ScholarDigital LibraryDigital Library
  98. T. Motzkin and E. G. Straus. 1965. Maxima for graphs and a new proof of a theorem of Turán. Canad. J. Math. 17, 533--540.Google ScholarGoogle ScholarCross RefCross Ref
  99. K. G. Murty and S. N. Kabadi. 1987. Some NP-complete problems in quadratic and nonlinear programming. Math. Prog. 39, 2, 117--129. Google ScholarGoogle ScholarDigital LibraryDigital Library
  100. B. K. Natarajan. 1995. Sparse approximate solutions to linear systems. SIAM J. Comput. 24, 2, 227--234. Google ScholarGoogle ScholarDigital LibraryDigital Library
  101. Yu. Nesterov. 2003. Random walk in a simplex and quadratic optimization over convex polytopes. Preprint. http://edoc.bib.ucl.ac.be:83/archive/00000238/01/dp2003-71.pdf.Google ScholarGoogle Scholar
  102. G. Ni, L. Qi, F. Wang, and Y. Wang. 2007. The degree of the E-characteristic polynomial of an even order tensor. J. Math. Anal. Appl. 329, 2, 1218--1229.Google ScholarGoogle ScholarCross RefCross Ref
  103. M. L. Overton. 2001. Numerical Computing with IEEE Floating Point Arithmetic. SIAM, Philadelphia, PA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  104. A. Pappas, Y. Sarantopoulos, and A. Tonge. 2007. Norm attaining polynomials. Bull. Lond. Math. Soc. 39, 2, 255--264.Google ScholarGoogle ScholarCross RefCross Ref
  105. B. Poonen. 2002. Undecidable problems: A sampler. http://arxiv.org/abs/1204.0299.Google ScholarGoogle Scholar
  106. B. Poonen. 2003. Hilbert’s tenth problem and Mazur’s conjecture for large subrings of Q. J. AMS 16, 4, 981--990.Google ScholarGoogle Scholar
  107. L. Qi. 2007. Eigenvalues and invariants of tensors. J. Math. Anal. Appl. 325, 2, 1363--1377.Google ScholarGoogle ScholarCross RefCross Ref
  108. L. Qi. 2005. Eigenvalues of a real supersymmetric tensor. J. Symb. Comput. 40, 6, 1302--1324. Google ScholarGoogle ScholarDigital LibraryDigital Library
  109. B. Reznick. 1992. Sums of even powers of real linear forms. Mem. Amer. Math. Soc. 96, 463.Google ScholarGoogle ScholarCross RefCross Ref
  110. B. Reznick. 2013. On the length of binary forms. In Quadratic and Higher Degree Forms, Developments in Mathematics, K. Alladi, M. Bhargava, D. Savitt, and P. Tiep Eds., Springer, New York. http://arxiv.org/abs/1007.5485.Google ScholarGoogle Scholar
  111. T. Schultz and H.-P. Seidel. 2008. Estimating crossing fibers: A tensor decomposition approach. IEEE Trans. Vis. Comput. Graphics 14, 6, 1635--1642. Google ScholarGoogle ScholarDigital LibraryDigital Library
  112. A. Shashua and T. Hazan. 2005. Non-negative tensor factorization with applications to statistics and computer vision. In Proceedings of the International Conference on Machine Learning (ICML). 792--799. Google ScholarGoogle ScholarDigital LibraryDigital Library
  113. J. Shi and J. Malik. 2000. Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22, 8, 888--905. Google ScholarGoogle ScholarDigital LibraryDigital Library
  114. N. D. Sidiropoulos, R. Bro, and G. B. Giannakis. 2000. Parallel factor analysis in sensor array processing. IEEE Trans. Signal Process. 48, 8, 2377--2388. Google ScholarGoogle ScholarDigital LibraryDigital Library
  115. M. Sipser. 2012. Introduction to the Theory of Computation 3rd Ed., Cengage Learning, Boston, MA.Google ScholarGoogle Scholar
  116. S. Smale. 2000. Mathematical problems for the next century. In Mathematics: Frontiers and Perspectives, V. Arnold, M. Atiyah, P. Lax, and B. Mazur Eds., AMS, Providence, RI.Google ScholarGoogle Scholar
  117. A. Smilde, R. Bro, and P. Geladi. 2004. Multi-Way Analysis: Applications in the Chemical Sciences. John Wiley, West Sussex.Google ScholarGoogle Scholar
  118. D. Steinberg. 2005. Computation of Matrix Norms with Applications to Robust Optimization, M.Sc. dissertation, Technion, Haifa, Israel. http://www2.isye.gatech.edu/~nemirovs/Daureen.pdf.Google ScholarGoogle Scholar
  119. A. M. Turing. 1937. On computable numbers, with an application to the Entscheidungsproblem. Proc. Lond. Math. Soc. 2nd Series 42, 1, 230--265. (see also correction in 43, 6, 544--546.)Google ScholarGoogle ScholarCross RefCross Ref
  120. L. G. Valiant. 1979a. Completeness classes in algebra. In Proceedings of the ACM Symposium on Theory of Computing (STOC). 249--261. Google ScholarGoogle ScholarDigital LibraryDigital Library
  121. L. G. Valiant. 1979b. The complexity of computing the permanent. Theoret. Comput. Sci. 8, 2, 189--201.Google ScholarGoogle ScholarCross RefCross Ref
  122. M. A. O. Vasilescu. 2002. Human motion signatures: Analysis, synthesis, recognition. In Proceedings of the International Conference on Pattern Recognition (ICPR), 456--460. Google ScholarGoogle ScholarDigital LibraryDigital Library
  123. M. A. O. Vasilescu and D. Terzopoulos. 2002. Multilinear image analysis for facial recognition. In Proceedings of the International Conference on Pattern Recognition (ICPR), 511--514.Google ScholarGoogle Scholar
  124. M. A. O. Vasilescu and D. Terzopoulos. 2004. TensorTextures: Multilinear image-based rendering. In Proceedings of ACM SIGGRAPH. 336--342. Google ScholarGoogle ScholarDigital LibraryDigital Library
  125. S. A. Vavasis. 1991. Nonlinear Optimization: Complexity Issues. International Series of Monographs on Computer Science, Oxford University Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  126. S. A. Vavasis. 2009. On the complexity of nonnegative matrix factorization. SIAM J. Optim. 20, 3, 1364--1377. Google ScholarGoogle ScholarDigital LibraryDigital Library
  127. V. Vazirani. 2003. Approximation Algorithms. Springer-Verlag, Berlin. Google ScholarGoogle ScholarDigital LibraryDigital Library
  128. T.-C. Wei and P. M. Goldbart. 2003. Geometric measure of entanglement and applications to bipartite and multipartite quantum states. Phys. Rev. A 68, 4, 042307-1--12.Google ScholarGoogle ScholarCross RefCross Ref
  129. K. Weihrauch. 2000. Computable Analysis: An Introduction. Springer-Verlag, Berlin. Google ScholarGoogle ScholarCross RefCross Ref
  130. C. K. Yap. 2000. Fundamental Problems of Algorithmic Algebra. Oxford University Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  131. D. Zuckerman. 2006. Linear degree extractors and the inapproximability of max clique and chromatic number. In Proceedings of the ACM Symposium on Theory of Computing (STOC). 681--690. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Most Tensor Problems Are NP-Hard

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader