skip to main content
10.1145/2525314.2525359acmconferencesArticle/Chapter ViewAbstractPublication PagesgisConference Proceedingsconference-collections
research-article

Algorithms for hotspot computation on trajectory data

Published:05 November 2013Publication History

ABSTRACT

We study one of the basic tasks in moving object analysis, namely the location of hotspots. A hotspot is a (small) region in which an entity spends a significant amount of time. Finding such regions is useful in many applications, for example in segmentation, clustering, and locating popular places. We may be interested in locating a minimum size hotspot in which the entity spends a fixed amount of time, or locating a fixed size hotspot maximizing the time that the entity spends inside it. Furthermore, we can consider the total time, or the longest contiguous time the entity spends in the hotspot. We solve all four versions of the problem. For a square hotspot, we can solve the contiguous-time versions in O(nlogn) time, where n is the number of trajectory vertices. The algorithms for the total-time versions are roughly quadratic. Finding a hotspot containing relatively the most time, compared to its size, takes O(n3) time. Even though we focus on a single moving entity, our algorithms immediately extend to multiple entities. Finally, we consider hotspots of different shape.

References

  1. P. Agarwal, M. Sharir, and S. Toledo. Applications of parametric searching in geometric optimization. J. of Algorithms, 17(3):292--318, 1994. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. H. Alt, B. Behrends, and J. Blömer. Approximate matching of polygonal shapes. Ann. Math. Artif. Intell., 13(3-4):251--265, 1995.Google ScholarGoogle ScholarCross RefCross Ref
  3. H. Alt and M. Godau. Computing the Fréchet distance between two polygonal curves. Int. J. Comput. Geom. Appl., 5:75--91, 1995.Google ScholarGoogle ScholarCross RefCross Ref
  4. L. O. Alvares, V. Bogorny, B. Kuijpers, J. de Macêdo, B. Moelans, and A. Vaisman. A model for enriching trajectories with semantic geographical information. In Proc. 15th ACM Int. Sympos. on Geographic Information Systems, page 22. ACM, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. R. Anderson, P. Beanie, and E. Brisson. Parallel algorithms for arrangements. Algorithmica, 15(2):104--125, 1996.Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. B. Aronov, A. Driemel, M. van Kreveld, M. Löffler, and F. Staals. Segmentation of trajectories for non-monotone criteria. In Proc. 24th Annual ACM-SIAM Sympos. on Discrete Algorithms, pages 1897--1911, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  7. M. Benkert, B. Djordjevic, J. Gudmundsson, and T. Wolle. Finding popular places. Int. J. Comput. Geometry Appl., 20(1):19--42, 2010.Google ScholarGoogle ScholarCross RefCross Ref
  8. M. Benkert, J. Gudmundsson, F. Hübner, and T. Wolle. Reporting flock patterns. Comput. Geom., 41:111--125, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. K. Buchin, M. Buchin, and J. Gudmundsson. Detecting single file movement. In Proc. 16th ACM Int. Conf. on Advances in Geographic Information Systems, pages 288--297, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. K. Buchin, M. Buchin, J. Gudmundsson, M. Löffler, and J. Luo. Detecting commuting patterns by clustering subtrajectories. Int. J. Comput. Geom. Appl., 21(3):253--282, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  11. K. Buchin, M. Buchin, M. van Kreveld, and J. Luo. Finding long and similar parts of trajectories. Comput. Geom., 44(9):465--476, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. M. Buchin, A. Driemel, M. van Kreveld, and V. Sacristan. An algorithmic framework for segmenting trajectories based on spatio-temporal criteria. In Proc. 18th ACM Int. Sympos. on Advances in Geographic Information Systems, pages 202--211, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. MIT Press, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. S. Dodge, R. Weibel, and A.-K. Lautenschütz. Towards a taxonomy of movement patterns. Information Visualization, 7(3-4):240--252, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. P. Fauchald and T. Tveraa. Using first-passage time in the analysis of area-restricted search and habitat selection. Ecology, 84(2):282--288, 2003.Google ScholarGoogle ScholarCross RefCross Ref
  16. S. Gaffney and P. Smyth. Trajectory clustering with mixtures of regression models. In Proc. 5th Int. Conf. on Data Discovery and Data Mining, pages 63--72, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. J. Gudmundsson, P. Laube, and T. Wolle. Movement patterns in spatio-temporal data. In S. Shekhar and H. Xiong, editors, Encyclopedia of GIS, pages 726--732. Springer, 2008.Google ScholarGoogle ScholarCross RefCross Ref
  18. J. Gudmundsson, M. van Kreveld, and B. Speckmann. Efficient detection of patterns in 2D trajectories of moving points. GeoInformatica, 11:195--215, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. A. Jain, M. N. Murty, and P. Flynn. Data clustering: A review. ACM Comput. Surv., 31(3):264--323, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. H. Jeung, M. Yiu, and C. Jensen. Trajectory pattern mining. In Y. Zheng and X. Zhou, editors, Computing with Spatial Trajectories, pages 143--177. Springer, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  21. A. Johnson, J. Wiens, B. Milne, and T. Crist. Animal movements and population dynamics in heterogeneous landscapes. Landscape Ecology, 7:63--75, 1992.Google ScholarGoogle ScholarCross RefCross Ref
  22. E. J. Keogh. Exact indexing of dynamic time warping. In Proc. 28th Int. Conf. on Very Large Data Bases, pages 406--417, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. P. Laube, M. van Kreveld, and S. Imfeld. Finding REMO -- detecting relative motion patterns in geospatial lifelines. In P. Fisher, editor, Developments in Spatial Data Handling: 11th Int. Sympos. on Spatial Data Handling, pages 201--215, 2004.Google ScholarGoogle Scholar
  24. J. Lee, J. Han, and K.-Y. Whang. Trajectory clustering: a partition-and-group framework. In Proc. ACM Int. Conf. on Management of Data, pages 593--604, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. N. Megiddo. Applying parallel computation algorithms in the design of serial algorithms. J. ACM, 30(4):852--865, 1983. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. B. Moreno, V. Times, C. Renso, and V. Bogorny. Looking inside the stops of trajectories of moving objects. In Proc. XI Brazilian Sympos. on Geoinformatics, pages 9--20. MCT/INPE, 2010.Google ScholarGoogle Scholar
  27. D. Mount, R. Silverman, and A. Wu. On the area of overlap of translated polygons. Computer Vision and Image Understanding, 64(1):53--61, 1996. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. M. Nanni and D. Pedreschi. Time-focused clustering of trajectories of moving objects. J. of Intelligent Information Systems, 27:285--289, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. A. Palma, V. Bogorny, B. Kuijpers, and L. O. Alvares. A clustering-based approach for discovering interesting places in trajectories. In Proc. 2008 ACM Sympos. on Applied Computing, pages 863--868, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Y. Shiloach and U. Vishkin. An O(log n) parallel connectivity algorithm. J. of Algorithms, 3(1):57--67, 1982.Google ScholarGoogle ScholarCross RefCross Ref
  31. S. Spaccapietra, C. Parent, M. Damiani, J. de Macêdo, F. Porto, and C. Vangenot. A conceptual view on trajectories. Data Knowl. Eng., 65(1):126--146, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. S. Tiwari and S. Kaushik. Mining popular places in a geo-spatial region based on GPS data using semantic information. In Proc. 8th Int. Workshop on Databases in Networked Information Systems, volume 7813 of LNCS, pages 262--276. Springer, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  33. F. Verhein and S. Chawla. Mining spatio-temporal association rules, sources, sinks, stationary regions and thoroughfares in object mobility databases. In Proc. 11th Int. Conf. on Database Systems for Advanced Applications, volume 3882 of LNCS, pages 187--201. Springer, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. M. Vlachos, D. Gunopulos, and G. Kollios. Discovering similar multidimensional trajectories. In Proc. 18th Int. Conf. on Data Engineering, pages 673--684, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. H. Yoon and C. Shahabi. Robust time-referenced segmentation of moving object trajectories. In Proc. 8th IEEE Int. Conf. on Data Mining, pages 1121--1126, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Algorithms for hotspot computation on trajectory data

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      SIGSPATIAL'13: Proceedings of the 21st ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems
      November 2013
      598 pages
      ISBN:9781450325219
      DOI:10.1145/2525314

      Copyright © 2013 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 5 November 2013

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      Overall Acceptance Rate220of1,116submissions,20%

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader