skip to main content
research-article

Nonuniform ACC Circuit Lower Bounds

Published:01 January 2014Publication History
Skip Abstract Section

Abstract

The class ACC consists of circuit families with constant depth over unbounded fan-in AND, OR, NOT, and MODm gates, where m > 1 is an arbitrary constant. We prove the following.

---NEXP, the class of languages accepted in nondeterministic exponential time, does not have nonuniform ACC circuits of polynomial size. The size lower bound can be slightly strengthened to quasipolynomials and other less natural functions.

---ENP, the class of languages recognized in 2O(n) time with an NP oracle, doesn’t have nonuniform ACC circuits of 2no(1) size. The lower bound gives an exponential size-depth tradeoff: for every d, m there is a δ > 0 such that ENP doesn’t have depth-d ACC circuits of size 2nδ with MODm gates.

Previously, it was not known whether EXPNP had depth-3 polynomial-size circuits made out of only MOD6 gates. The high-level strategy is to design faster algorithms for the circuit satisfiability problem over ACC circuits, then prove that such algorithms entail these lower bounds. The algorithms combine known properties of ACC with fast rectangular matrix multiplication and dynamic programming, while the second step requires a strengthening of the author’s prior work.

References

  1. Scott Aaronson and Avi Wigderson. 2009. Algebrization: A new barrier in complexity theory. ACM Trans. Comput. Theory 1, 1. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Manindra Agrawal, Eric Allender, and Samir Datta. 2000. On TC0, AC0, and arithmetic circuits. J. Comput. Syst. Sci. 60, 2, 395--421. Google ScholarGoogle ScholarCross RefCross Ref
  3. Miklos Ajtai. 1983. Σ11-formulae on finite structures. Ann. Pure Appl. Logic 24, 1--48.Google ScholarGoogle ScholarCross RefCross Ref
  4. Eric Allender. 1989. A note on the power of threshold circuits. In Proceedings of FOCS. 580--584. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Eric Allender. 1999. The permanent requires large uniform threshold circuits. Chicago J. Theoret. Comput. Sci.Google ScholarGoogle Scholar
  6. Eric Allender and Vivek Gore. 1991. On strong separations from AC0. Fund. Computat. Theory 8.Google ScholarGoogle Scholar
  7. Noga Alon and Ravi B. Boppana. 1987. The monotone circuit complexity of Boolean functions. Combinatorica 7, 1, 1--22. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Sanjeev Arora and Boaz Barak. 2009. Computational Complexity - A Modern Approach. Cambridge University Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. László Babai, Lance Fortnow, Noam Nisan, and Avi Wigderson. 1993. BPP has subexponential time simulations unless EXPTIME has publishable proofs. Computat. Complex. 3, 4, 307--318. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Theodore Baker, John Gill, and Robert Solovay. 1975. Relativizations of the P =? NP question. SIAM J. Comput. 4, 4, 431--442.Google ScholarGoogle ScholarCross RefCross Ref
  11. David A. Mix Barrington. 1989. Bounded-width polynomial-size branching programs recognize exactly those languages in NC1. J. Comput. Syst. Sci. 38, 1, 150--164. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. David A. Mix Barrington and Howard Straubing. 1995. Superlinear lower bounds for bounded-width branching programs. J. Comput. Syst. Sci. 50, 3, 374--381. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. David A. Mix Barrington and Denis Thérien. 1988. Finite monoids and the fine structure of NC1. J. ACM 35, 4, 941--952. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. David A. Mix Barrington, Howard Straubing, and Denis Thérien. 1990. Non-uniform automata over groups. Inf. Comput. 89, 2, 109--132. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Richard Beigel and Jun Tarui. 1994. On ACC. Computat. Complex., 350--366. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Dario Bini and Victor Pan. 1994. Polynomial and Matrix Computations. Birkhauser. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Andreas Björklund, Thore Husfeldt, and Mikko Koivisto. 2009. Set partitioning via inclusion-exclusion. SIAM J. Comput. 39, 2, 546--563. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Harry Buhrman, Lance Fortnow, and Thomas Thierauf. 1998. Nonrelativizing separations. In Proceedings of 13th Annual IEEE Conference on Computational Complexity. 8--12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Chris Calabro, Russell Impagliazzo, and Ramamohan Paturi. 2006. A duality between clause width and clause density for SAT. In Proceedings of the IEEE Conference on Computational Complexity. 252--260. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Chris Calabro, Russell Impagliazzo, and Ramamohan Paturi. 2009. The complexity of satisfiability of small depth circuits. In Proceedings of the International Workshop on Parameterized and Exact Complexity (IWPEC). 75--85. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. John F. Canny, Erich Kaltofen, and Lakshman Yagati. 1989. Solving systems of non-linear equations faster. In Proceedings of the ACM-SIGSAM International Symposium on Symbolic and Algebraic Computation. 121--128. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Hervé Caussinus. 1996. A note on a theorem of Barrington, Straubing and Thérien. Inf. Process. Lett. 58, 1, 31--33. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Arkadev Chattopadhyay, Navin Goyal, Pavel Pudlák, and Denis Thérien. 2006. Lower bounds for circuits with MODm gates. In Proceedings of FOCS. 709--718. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Arkadev Chattopadhyay and Avi Wigderson. 2009. Linear systems over composite moduli. In Proceedings of FOCS. 43--52. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Stephen A. Cook. 1988. Short propositional formulas represent nondeterministic computations. Inf. Proc. Lett. 26, 5, 269--270. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Don Coppersmith. 1982. Rapid multiplication of rectangular matrices. SIAM J. Comput. 11, 3, 467--471.Google ScholarGoogle ScholarCross RefCross Ref
  27. Don Coppersmith. 1997. Rectangular matrix multiplication revisited. J. Complex. 13, 42--49. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Evgeny Dantsin and Edward A. Hirsch. 2009. Worst-case upper bounds. In Handbook of Satisfiability, 403--424.Google ScholarGoogle Scholar
  29. Lance Fortnow, Richard J. Lipton, Dieter van Melkebeek, and Anastasios Viglas. 2005. Time-space lower bounds for satisfiability. J. ACM 52, 6, 835--865. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Merrick L. Furst, James B. Saxe, and Michael Sipser. 1984. Parity, circuits, and the polynomial-time hierarchy. Math. Syst. Theory 17, 1, 13--27.Google ScholarGoogle ScholarCross RefCross Ref
  31. Frederic Green, Johannes Kobler, Kenneth W. Regan, Thomas Schwentick, and Jacobo Torán. 1995. The power of the middle bit of a #P function. J. Comput. System Sci. 50, 3, 456--467. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Vince Grolmusz. 1998. A lower bound for depth-3 circuits with MOD m gates. Inf. Proc. Lett. 67, 2, 87--90. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Vince Grolmusz and Gábor Tardos. 2000. Lower bounds for (MODp-MODm) circuits. SIAM J. Comput. 29, 4, 1209--1222. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Yuri Gurevich and Saharon Shelah. 1989. Nearly linear time. In Proceedings of the Symposium on Logical Foundations of Computer Science, A. R. Meyer and M. A. Taitslin Eds., Lecture Notes in Computer Science, vol. 363, Springer, Berlin, 108--118. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Kristoffer Arnsfelt Hansen. 2006. Constant width planar computation characterizes ACC0. Theory Comput. Syst. 39, 1, 79--92.Google ScholarGoogle ScholarCross RefCross Ref
  36. Kristoffer Arnsfelt Hansen and Michal Koucký. 2010. A new characterization of ACC0 and probabilistic CC0. Computat. Complex. 19, 2, 211--234. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Johan Håstad. 1986. Almost optimal lower bounds for small depth circuits. In Proceedings of the 18th Annual ACM Symposium on Theory of Computing. 6--20. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. John E. Hopcroft and J. Musinski. 1973. Duality applied to the complexity of matrix multiplication and other bilinear forms. SIAM J. Comput. 2, 3, 159--173.Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Xiaohan Huang and Victor Y. Pan. 1998. Fast rectangular matrix multiplication and applications. J. Complex. 14, 2, 257--299. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Russell Impagliazzo, Valentine Kabanets, and Avi Wigderson. 2002. In search of an easy witness: Exponential time vs. probabilistic polynomial time. J. Comput. Syst. Sci. 65, 4, 672--694. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Russell Impagliazzo, William Matthews, and Ramamohan Paturi. 2012. A satisfiability algorithm for AC0. In Proceedings of SODA. 961--972. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Kazuo Iwama and Hiroki Morizumi. 2002. An explicit lower bound of 5n − o(n) for Boolean circuits. In Proceedings of MFCS. 353--364. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Valentine Kabanets and Russell Impagliazzo. 2004. Derandomizing polynomial identity tests means proving circuit lower bounds. Computat. Complex. 13, 1--2, 1--46. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Ravi Kannan. 1982. Circuit-size lower bounds and non-reducibility to sparse sets. Inf. Control 55, 1, 40--56.Google ScholarGoogle ScholarCross RefCross Ref
  45. Ravi Kannan, H. Venkateswaran, V. Vinay, and Andrew Chi-Chih Yao. 1993. A circuit-based proof of Toda’s theorem. Inf. Comput. 104, 2, 271--276. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Adam Klivans and Dieter van Melkebeek. 2002. Graph nonisomorphism has subexponential size proofs unless the polynomial hierarchy collapses. SIAM J. Comput. 31, 5, 1501--1526. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Matthias Krause and Pavel Pudlák. 1997. On the computational power of depth-2 circuits with threshold and modulo gates. Theoret. Comput. Sci. 174, 1--2, 137--156. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Oded Lachish and Ran Raz. 2001. Explicit lower bound of 4.5n − o(n) for Boolena circuits. In Proceedings of STOC. 399--408. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Peter Bro Miltersen, N. V. Vinodchandran, and Osamu Watanabe. 1999. Super-polynomial versus half-exponential circuit size in the exponential hierarchy. In Proceedings of COCOON. Lecture Notes in Computer Science, vol. 1627, Springer, 210--220. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Noam Nisan and Avi Wigderson. 1994. Hardness vs randomness. J. Comput. Syst. Sci. 49, 2, 149--167. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Victor Y. Pan. 1984. How to Multiply Matrices Faster. Lecture Notes in Computer Science, vol. 179, Springer-Verlag. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Christos H. Papadimitriou and Mihalis Yannakakis. 1986. A note on succinct representations of graphs. Inf. Control 71, 3, 181--185. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. Wolfgang J. Paul and Rüdiger Reischuk. 1980. On alternation II. A graph theoretic approach to determinism versus nondeterminism. Acta Informatica 14, 4, 391--403.Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Alexander Razborov and Steven Rudich. 1997. Natural proofs. J. Comput. Syst. Sci. 55, 1, 24--35. Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. Alexander A. Razborov. 1985. Lower bounds for the monotone complexity of some Boolean functions. Sov. Math. Dokl. 31, 354--357.Google ScholarGoogle Scholar
  56. Alexander A. Razborov. 1987. Lower bounds on the size of bounded-depth networks over the complete basis with logical addition. Math. Notes Acad. Sci. USSR 41, 4, 333--338.Google ScholarGoogle ScholarCross RefCross Ref
  57. Alexander A. Razborov. 1989. On the method of approximations. In Proceedings of the 21st Annual ACM Symposium on Theory of Computing. 167--176. Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. J. M. Robson. 1991. An O(T log T) reduction from RAM computations to satisfiability. Theoret. Comput. Sci. 82, 1, 141--149. Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. Rahul Santhanam. 2010. Fighting perebor: New and improved algorithms for formula and QBF satisfiability. In Proceedings of FOCS. 183--192. Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. Rahul Santhanam and Ryan Williams. 2013. On medium-uniformity and circuit lower bounds. In Proceedings of the IEEE Conference on Computational Complexity. 15--23.Google ScholarGoogle ScholarCross RefCross Ref
  61. Claus-Peter Schnorr. 1978. Satisfiability is quasilinear complete in NQL. J. ACM 25, 1, 136--145. Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. Arnold Schönhage. 1981. Partial and total matrix multiplication. SIAM J. Comput. 10, 3, 434--455.Google ScholarGoogle ScholarDigital LibraryDigital Library
  63. Rainer Schuler. 2005. An algorithm for the satisfiability problem of formulas in conjunctive normal form. J. Algor. 54, 1, 40--44. Google ScholarGoogle ScholarDigital LibraryDigital Library
  64. Joel Seiferas, Michael Fischer, and Albert Meyer. 1978. Separating nondeterministic time complexity classes. J. ACM 25, 1, 146--167. Google ScholarGoogle ScholarDigital LibraryDigital Library
  65. Kazuhisa Seto and Suguru Tamaki. 2013. A satisfiability algorithm and average-case hardness for formulas over the full binary basis. Computat. Complex. 22, 2, 245--274.Google ScholarGoogle ScholarCross RefCross Ref
  66. Roman Smolensky. 1987. Algebraic methods in the theory of lower bounds for Boolean circuit complexity. In Proceedings of STOC. 77--82. Google ScholarGoogle ScholarDigital LibraryDigital Library
  67. Denis Thérien. 1994. Circuits constructed with MODq gates cannot compute AND in sublinear size. Computat. Complex. 4, 383--388. Google ScholarGoogle ScholarDigital LibraryDigital Library
  68. Seinosuke Toda. 1991. PP is as hard as the polynomial-time hierarchy. SIAM J. Comput. 20, 5, 865--877. Google ScholarGoogle ScholarDigital LibraryDigital Library
  69. Iannis Tourlakis. 2001. Time-space tradeoffs for SAT on nonuniform machines. J. Comput. Syst. Sci. 63, 2, 268--287. Google ScholarGoogle ScholarDigital LibraryDigital Library
  70. G. S. Tseitin. 1968. On the complexity of derivation in propositional calculus. In Studies in Constructive Mathematics and Mathematical Logics, 115--125.Google ScholarGoogle Scholar
  71. Leslie Valiant and Vijay Vazirani. 1986. NP is as easy as detecting unique solutions. Theoret. Comp. Sci. 47, 3, 85--93. Google ScholarGoogle ScholarDigital LibraryDigital Library
  72. Fengming Wang. 2011. NEXP does not have non-uniform quasipolynomial-size ACC circuits of o(loglogn) depth. In Proceedings of TAMC. 164--170. Google ScholarGoogle ScholarDigital LibraryDigital Library
  73. Ryan Williams. 2011. Guest column: A casual tour around a circuit complexity bound. SIGACT News 42, 3, 54--76. Google ScholarGoogle ScholarDigital LibraryDigital Library
  74. Ryan Williams. 2013. Improving exhaustive search implies superpolynomial lower bounds. SIAM J. Comput. 42, 3, 1218--1244.Google ScholarGoogle ScholarCross RefCross Ref
  75. Pei Yuan Yan and Ian Parberry. 1994. Exponential size lower bounds for some depth three circuits. Inf. Comput. 112, 1, 117--130. Google ScholarGoogle ScholarDigital LibraryDigital Library
  76. Andrew Chi-Chih Yao. 1985. Separating the polynomial-time hierarchy by oracles (preliminary version). In Proceedings of FOCS. 1--10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  77. Andrew Chi-Chih Yao. 1990. On ACC and threshold circuits. In Proceedings of FOCS. 619--627. Google ScholarGoogle ScholarDigital LibraryDigital Library
  78. Stanislav Žák. 1983. A Turing machine time hierarchy. Theoret. Comput. Sci. 26, 3, 327--333.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Nonuniform ACC Circuit Lower Bounds

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image Journal of the ACM
      Journal of the ACM  Volume 61, Issue 1
      January 2014
      222 pages
      ISSN:0004-5411
      EISSN:1557-735X
      DOI:10.1145/2578041
      Issue’s Table of Contents

      Copyright © 2014 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 1 January 2014
      • Accepted: 1 May 2013
      • Revised: 1 July 2012
      • Received: 1 May 2011
      Published in jacm Volume 61, Issue 1

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader