skip to main content
10.1145/2562059.2562113acmconferencesArticle/Chapter ViewAbstractPublication PagescpsweekConference Proceedingsconference-collections
research-article

Inner approximated reachability analysis

Published:15 April 2014Publication History

ABSTRACT

Computing a tight inner approximation of the range of a function over some set is notoriously difficult, way beyond obtaining outer approximations. We propose here a new method to compute a tight inner approximation of the set of reachable states of non-linear dynamical systems on a bounded time interval. This approach involves affine forms and Kaucher arithmetic, plus a number of extra ingredients from set-based methods. An implementation of the method is discussed, and illustrated on representative numerical schemes, discrete-time and continuous-time dynamical systems.

References

  1. M. Althoff, O. Stursberg, and M. Buss. Reachability analysis of linear systems with uncertain parameters and inputs. In IEEE CDC, 2007.Google ScholarGoogle ScholarCross RefCross Ref
  2. J. Aubin and H. Frankowska. Set-Valued Analysis. Birkhäuser, Boston, 1990.Google ScholarGoogle Scholar
  3. O. Bouissou, A. Chapoutot, and A. Djoudi. Enclosing temporal evolution of dynamical systems using numerical methods. In NASA Formal Methods, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  4. X. Chen, E. Ábrahám, and S. Sankaranarayanan. Taylor model flowpipe construction for non-linear hybrid systems. In RTSS, pages 183--192, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. X. Chen, E. Ábrahám, and S. Sankaranarayanan. Flow*: An analyzer for non-linear hybrid systems. In CAV, pages 258--263, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. J. L. D. Comba and J. Stolfi. Affine arithmetic and its applications to computer graphics. SIBGRAPI, 1993.Google ScholarGoogle Scholar
  7. T. Dang and R. Testylier. Hybridization domain construction using curvature estimation. In HSCC, pages 123--132, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier, and P. Zimmermann. Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw, 33(2):13, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. E. Gardeñes, M. Sainz, L. Jorba, R. Calm, R. Estela, H. Mielgo, and A. Trepat. Model intervals. Reliable Computing, 7(2):77--111, 2001.Google ScholarGoogle ScholarCross RefCross Ref
  10. K. Ghorbal, E. Goubault, and S. Putot. The zonotope abstract domain taylor1+. In CAV'09, volume 5643 of LNCS, pages 627--633. Springer, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. K. Ghorbal, E. Goubault, and S. Putot. A logical product approach to zonotope intersection. In CAV'10, volume 6174 of LNCS, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. A. Girard. Reachability of uncertain linear systems using zonotopes. In HSCC'05. Springer, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. A. Girard, C. Le Guernic, and O. Maler. Efficient computation of reachable sets of linear time-invariant systems with inputs. In HSCC 2006, volume 3927 of LNCS, pages 257--271. Springer, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. A. Goldsztejn, D. Daney, M. Rueher, and P. Taillibert. Modal intervals revisited: a mean-value extension to generalized intervals. In QCP'05, 2005.Google ScholarGoogle Scholar
  15. A. Goldsztejn, L. Jaulin, et al. Inner approximation of the range of vector-valued functions. Reliable Computing, 14:1--23, 2010.Google ScholarGoogle Scholar
  16. E. Goubault, M. Kieffer, O. Mullier, and S. Putot. General inner approximation of vector-valued functions. Reliable Computing, 18:117--143, 2013.Google ScholarGoogle Scholar
  17. E. Goubault and S. Putot. Under-approximations of computations in real numbers based on generalized affine arithmetic. In SAS, pages 137--152, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. E. Goubault and S. Putot. A zonotopic framework for functional abstractions. CoRR, abs/0910.1763, 2009.Google ScholarGoogle Scholar
  19. E. Goubault, S. Putot, and F. Vedrine. Modular static analysis with zonotopes. In SAS'12, volume 7460 of LNCS, pages 24--40. Springer, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. C. L. Guernic and A. Girard. Reachability analysis of hybrid systems using support functions. In CAV, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. D. Henrion and C. Louembet. Convex inner approximations of nonconvex semialgebraic sets applied to fixed-order controller design. International Journal of Control, 85(8):1083--1092, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  22. D. Ishii, A. Goldsztejn, and C. Jermann. Interval-based projection method for under-constrained numerical systems. Constraints, 17(4):432--460, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. B. Jeannet and A. Miné. Apron: A library of numerical abstract domains for static analysis. In CAV'09, pages 661--667. Springer, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. A. Kanade, R. Alur, F. Ivančić, S. Ramesh, S. Sankaranarayanan, and K. C. Shashidhar. Generating and analyzing symbolic traces of simulink/stateflow models. In CAV'09. Springer, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. E. Kaucher. Interval analysis in the extended interval space IR. Comput. (Supplementum) 2, 1980.Google ScholarGoogle Scholar
  26. A. B. Kurzhanski and P. Varaiya. Ellipsoidal techniques for reachability analysis. In HSCC '00, pages 202--214. Springer, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. R. J. Lohner. Enclosing the solutions of ordinary initial and boundary value problems. In Computer Arithmetic: Scientific Computation and Programming Languages, pages 255--286. Wiley-Teubner, 1987.Google ScholarGoogle Scholar
  28. T. Nghiem, S. Sankaranarayanan, G. Fainekos, F. Ivancić, A. Gupta, and G. J. Pappas. Monte-carlo techniques for falsification of temporal properties of non-linear hybrid systems. In HSCC'10. ACM, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. M. A. B. Sassi, R. Testylier, T. Dang, and A. Girard. Reachability analysis of polynomial systems using linear programming relaxations. In ATVA, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Inner approximated reachability analysis

              Recommendations

              Comments

              Login options

              Check if you have access through your login credentials or your institution to get full access on this article.

              Sign in
              • Published in

                cover image ACM Conferences
                HSCC '14: Proceedings of the 17th international conference on Hybrid systems: computation and control
                April 2014
                328 pages
                ISBN:9781450327329
                DOI:10.1145/2562059

                Copyright © 2014 ACM

                Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

                Publisher

                Association for Computing Machinery

                New York, NY, United States

                Publication History

                • Published: 15 April 2014

                Permissions

                Request permissions about this article.

                Request Permissions

                Check for updates

                Qualifiers

                • research-article

                Acceptance Rates

                HSCC '14 Paper Acceptance Rate29of69submissions,42%Overall Acceptance Rate153of373submissions,41%

              PDF Format

              View or Download as a PDF file.

              PDF

              eReader

              View online with eReader.

              eReader