skip to main content
10.1145/2591796.2591848acmconferencesArticle/Chapter ViewAbstractPublication PagesstocConference Proceedingsconference-collections
research-article

Efficient density estimation via piecewise polynomial approximation

Published:31 May 2014Publication History

ABSTRACT

We give a computationally efficient semi-agnostic algorithm for learning univariate probability distributions that are well approximated by piecewise polynomial density functions. Let p be an arbitrary distribution over an interval I, and suppose that p is τ-close (in total variation distance) to an unknown probability distribution q that is defined by an unknown partition of I into t intervals and t unknown degree d polynomials specifying q over each of the intervals. We give an algorithm that draws Õ(t(d + 1)/ε2) samples from p, runs in time poly(t, d + 1, 1/ε), and with high probability outputs a piecewise polynomial hypothesis distribution h that is (14τ + ε)-close to p in total variation distance. Our algorithm combines tools from real approximation theory, uniform convergence, linear programming, and dynamic programming. Its sample complexity is simultaneously near optimal in all three parameters t, d and ε; we show that even for τ = 0, any algorithm that learns an unknown t-piecewise degree-d probability distribution over I to accuracy ε must use [EQUATION] samples from the distribution, regardless of its running time.

We apply this general algorithm to obtain a wide range of results for many natural density estimation problems over both continuous and discrete domains. These include state-of-the-art results for learning mixtures of log-concave distributions; mixtures of t-modal distributions; mixtures of Monotone Hazard Rate distributions; mixtures of Poisson Binomial Distributions; mixtures of Gaussians; and mixtures of k-monotone densities. Our general technique gives improved results, with provably optimal sample complexities (up to logarithmic factors) in all parameters in most cases, for all these problems via a single unified algorithm.

Skip Supplemental Material Section

Supplemental Material

p604-sidebyside.mp4

mp4

232.5 MB

References

  1. {AK03} S. Arora and S. Khot. Fitting algebraic curves to noisy data. J. Comput. Syst. Sci., 67(2):325--340, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. {Ass83} P. Assouad. Deux remarques sur l'estimation. C. R. Acad. Sci. Paris Sér. I, 296:1021--1024, 1983.Google ScholarGoogle Scholar
  3. {BBBB72} R. E. Barlow, D. J. Bartholomew, J. M. Bremner, and H. D. Brunk. Statistical Inference under Order Restrictions. Wiley, New York, 1972.Google ScholarGoogle Scholar
  4. {Bir87a} L. Birgé. Estimating a density under order restrictions: Nonasymptotic minimax risk. Annals of Statistics, 15(3):995--1012, 1987.Google ScholarGoogle ScholarCross RefCross Ref
  5. {Bir87b} L. Birgé. On the risk of histograms for estimating decreasing densities. Annals of Statistics, 15(3):1013--1022, 1987.Google ScholarGoogle ScholarCross RefCross Ref
  6. {Bru58} H. D. Brunk. On the estimation of parameters restricted by inequalities. Ann. Math. Statist., 29(2):pp. 437--454, 1958.Google ScholarGoogle ScholarCross RefCross Ref
  7. {BRW09} F. Balabdaoui, K. Rufibach, and J. A. Wellner. Limit distribution theory for maximum likelihood estimation of a log-concave density. Ann. Statist., 37(3):pp. 1299--1331, 2009.Google ScholarGoogle ScholarCross RefCross Ref
  8. {BS10} M. Belkin and K. Sinha. Polynomial learning of distribution families. In FOCS, pages 103--112, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. {BW07} F. Balabdaoui and J. A. Wellner. Estimation of a k-monotone density: Limit distribution theory and the spline connection. Ann. Statist., 35(6):pp. 2536--2564, 2007.Google ScholarGoogle ScholarCross RefCross Ref
  10. {BW10} F. Balabdaoui and J. A. Wellner. Estimation of a k-monotone density: characterizations, consistency and minimax lower bounds. Statistica Neerlandica, 64(1):45--70, 2010.Google ScholarGoogle ScholarCross RefCross Ref
  11. {CDSS13} S. Chan, I. Diakonikolas, R. Servedio, and X. Sun. Learning mixtures of structured distributions over discrete domains. In SODA, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. {DDO+13} C. Daskalakis, I. Diakonikolas, R. O'Donnell, R. A. Servedio, and L. Tan. Learning Sums of Independent Integer Random Variables. In FOCS, pages 217--226, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. {DDS12a} C. Daskalakis, I. Diakonikolas, and R. A. Servedio. Learning k-modal distributions via testing. In SODA, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. {DDS12b} C. Daskalakis, I. Diakonikolas, and R. A. Servedio. Learning Poisson Binomial Distributions. In STOC, pages 709--728, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. {DG85} L. Devroye and L. Györfi. Nonparametric Density Estimation: The L1 View. John Wiley & Sons, 1985.Google ScholarGoogle Scholar
  16. {DGJ+10} I. Diakoniokolas, P. Gopalan, R. Jaiswal, R. Servedio, and E. Viola. Bounded independence fools halfspaces. SIAM Journal on Computing, 39(8):3441--3462, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. {DL01} L. Devroye and G. Lugosi. Combinatorial methods in density estimation. Springer Series in Statistics, Springer, 2001.Google ScholarGoogle ScholarCross RefCross Ref
  18. {DR09} L. D umbgen and K. Rufibach. Maximum likelihood estimation of a log-concave density and its distribution function: Basic properties and uniform consistency. Bernoulli, 15(1):40--68, 2009.Google ScholarGoogle ScholarCross RefCross Ref
  19. {Dud74} R. M Dudley. Metric entropy of some classes of sets with differentiable boundaries. Journal of Approximation Theory, 10(3):227--236, 1974.Google ScholarGoogle ScholarCross RefCross Ref
  20. {FM99} Y. Freund and Y. Mansour. Estimating a mixture of two product distributions. In Proc. 12th COLT, pages 183--192, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. {FOS05} J. Feldman, R. O'Donnell, and R. Servedio. Learning mixtures of product distributions over discrete domains. In Proc. 46th IEEE FOCS, pages 501--510, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. {Gre56} U. Grenander. On the theory of mortality measurement. Skand. Aktuarietidskr., 39:125--153, 1956.Google ScholarGoogle Scholar
  23. {Gro85} P. Groeneboom. Estimating a monotone density. In Proc. Berkeley Conf. in Honor of J. Neyman and J. Kiefer, pages 539--555, 1985.Google ScholarGoogle Scholar
  24. {GW09} F. Gao and J. A. Wellner. On the rate of convergence of the maximum likelihood estimator of a k-monotone density. Science in China Series A: Math., 52:1525--1538, 2009.Google ScholarGoogle ScholarCross RefCross Ref
  25. {HP76} D. L. Hanson and G. Pledger. Consistency in concave regression. The Annals of Statistics, 4(6):pp. 1038--1050, 1976.Google ScholarGoogle ScholarCross RefCross Ref
  26. {KL04} V. N. Konovalov and D. Leviatan. Free-knot splines approximation of s-monotone functions. Adv. Comput. Math., 20(4):347--366, 2004.Google ScholarGoogle ScholarCross RefCross Ref
  27. {KL07} V. N. Konovalov and D. Leviatan. Freeknot splines approximation of sobolev-type classes of s-monotone functions. Adv. Comput. Math., 27(2):211--236, 2007.Google ScholarGoogle ScholarCross RefCross Ref
  28. {KM10} R. Koenker and I. Mizera. Quasi-concave density estimation. Ann. Statist., 38(5):2998--3027, 2010.Google ScholarGoogle ScholarCross RefCross Ref
  29. {KMR+94} M. Kearns, Y. Mansour, D. Ron, R. Rubinfeld, R. Schapire, and L. Sellie. On the learnability of discrete distributions. In Proc. 26th STOC, pages 273--282, 1994. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. {KMV10} A. T. Kalai, A. Moitra, and G. Valiant. Efficiently learning mixtures of two Gaussians. In STOC, pages 553--562, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. {MV10} A. Moitra and G. Valiant. Settling the polynomial learnability of mixtures of Gaussians. In FOCS, pages 93--102, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. {Nov88} E. Novak. Deterministic and Stochastic Error Bounds In Numerical Analysis. Springer-Verlag, 1988.Google ScholarGoogle ScholarCross RefCross Ref
  33. {PA13} D. Papp and F. Alizadeh. Shape constrained estimation using nonnegative splines. J. Comput. & Graph. Statist., 0, 2013.Google ScholarGoogle Scholar
  34. {Rao69} B. L. S. Prakasa Rao. Estimation of a unimodal density. Sankhya Ser. A, 31:23--36, 1969.Google ScholarGoogle Scholar
  35. {Reb05} L. Reboul. Estimation of a function under shape restrictions. Applications to reliability. Ann. Statist., 33(3):1330--1356, 2005.Google ScholarGoogle ScholarCross RefCross Ref
  36. {Sco92} D. W. Scott. Multivariate Density Estimation: Theory, Practice and Visualization. Wiley, New York, 1992.Google ScholarGoogle ScholarCross RefCross Ref
  37. {Sil86} B. W. Silverman. Density Estimation. Chapman and Hall, London, 1986.Google ScholarGoogle ScholarCross RefCross Ref
  38. {Wal09} G. Walther. Inference and modeling with log-concave distributions. Statistical Science, 24(3):319--327, 2009.Google ScholarGoogle ScholarCross RefCross Ref
  39. {Weg70} E. J. Wegman. Maximum likelihood estimation of a unimodal density. I. and II. Ann. Math. Statist., 41:457--471, 2169--2174, 1970.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Efficient density estimation via piecewise polynomial approximation

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Conferences
          STOC '14: Proceedings of the forty-sixth annual ACM symposium on Theory of computing
          May 2014
          984 pages
          ISBN:9781450327107
          DOI:10.1145/2591796

          Copyright © 2014 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 31 May 2014

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

          Acceptance Rates

          STOC '14 Paper Acceptance Rate91of319submissions,29%Overall Acceptance Rate1,469of4,586submissions,32%

          Upcoming Conference

          STOC '24
          56th Annual ACM Symposium on Theory of Computing (STOC 2024)
          June 24 - 28, 2024
          Vancouver , BC , Canada

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader