skip to main content
10.1145/2600428.2609578acmconferencesArticle/Chapter ViewAbstractPublication PagesirConference Proceedingsconference-collections
research-article

Preference preserving hashing for efficient recommendation

Published:03 July 2014Publication History

ABSTRACT

Recommender systems usually need to compare a large number of items before users' most preferred ones can be found This process can be very costly if recommendations are frequently made on large scale datasets. In this paper, a novel hashing algorithm, named Preference Preserving Hashing (PPH), is proposed to speed up recommendation. Hashing has been widely utilized in large scale similarity search (e.g. similar image search), and the search speed with binary hashing code is significantly faster than that with real-valued features. However, one challenge of applying hashing to recommendation is that, recommendation concerns users' preferences over items rather than their similarities. To address this challenge, PPH contains two novel components that work with the popular matrix factorization (MF) algorithm. In MF, users' preferences over items are calculated as the inner product between the learned real-valued user/item features. The first component of PPH constrains the learning process, so that users' preferences can be well approximated by user-item similarities. The second component, which is a novel quantization algorithm,generates the binary hashing code from the learned real-valued user/item features. Finally, recommendation can be achieved efficiently via fast hashing code search. Experiments on three real world datasets show that the recommendation speed of the proposed PPH algorithm can be hundreds of times faster than original MF with real-valued features, and the recommendation accuracy is significantly better than previous work of hashing for recommendation.

References

  1. J. Bennett and S. Lanning. The netflix prize. KDD Cup and Workshop, 2007.Google ScholarGoogle Scholar
  2. S. Chen, B. Ma, and K. Zhang. On the similarity metric and the distance metric. Theoretical Computer Science, pages 2365--2376, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. W. Chen, W. Hsu, and M. L. Lee. Modeling users' receptiveness over time for recommendation. SIGIR, pages 373--382, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. A. Das, M. Datar, A. Garg, and S. Rajaram. Google news personalization: Scalable online collaborative filtering. WWW, pages 271--280, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. R. Gemulla, P. Haas, E. Nijkamp, and Y. Sismanis. Large-scale matrix factorization with distributed stochastic gradient descent. KDD, pages 69--77, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. A. Gionis, P. Indyk, , and R. Motwani. Similarity search in high dimensions via hashing. VLDB, pages 518--529, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Y. Gong, S. Lazebnik, A. Gordo, and F. Perronnin. Iterative quantization: A procrustean approach to learning binary codes for large-scale image retrieval. TPAMI, pages 2916--2929, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. K. Grauman and R. Fergus. Learning binary hash codes for large-scale image search. MLCV, pages 49--87, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  9. K. Järvelin and J. Kekäläinen. Ir evaluation methods for retrieving highly relevant documents. SIGIR, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. A. Karatzoglou, A. Smola, and M. Weimer. Collaborative filtering on a budget. AISTAT, pages 389--396, 2010.Google ScholarGoogle Scholar
  11. N. Koenigstein, P. Ram, and Y. Shavitt. Efficient retrieval of recommendations in a matrix factorization framework. CIKM, pages 535--544, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. W. Kong, W. Li, and M. Guo. Manhattan hashing for large-scale image retrieval. SIGIR, pages 45--54, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Y. Koren. Factorization meets the neighborhood: a multifaceted collaborative filtering model. KDD, pages 426--434, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for recommender systems. IEEE Computer, pages 30--37, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. B. Kulis and K. Grauman. Kernelized locality-sensitive hashing for scalable image search. ICCV, 2009.Google ScholarGoogle ScholarCross RefCross Ref
  16. M. Li, X. Chen, X. Li, B. Ma, and P. M. Vit$\acutea$nyi. The similarity metric. IEEE Trans on Information Theory, pages 3250--3264, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. G. Linden, B. Smith, and J. York. Amazon.com recommendations item-to-item collaborative filtering. IEEE Internet Computing, pages 76--80, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. T. Liu, A. W. Moore, A. Gray, and K. Yang. An investigation of practical approximate nearest neighbor algorithms. NIPS, 2005.Google ScholarGoogle Scholar
  19. W. Liu, J. Wang, R. Ji, Y. Jiang, and S. Chang. Supervised hashing with kernels. CVPR, pages 2074--2081, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. W. Liu, J. Wang, Y. Mu, S. Kumar, and S. Chang. Compact hyperplane hashing with bilinear functions. ICML, 2012.Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. M. Norouzi, A. Punjani, and D. J. Fleet. Fast search in hamming space with multi-index hashing. In CVPR, pages 3108--3115, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. E. Ntoutsi, K. Stefanidis, K. Nørvåg, , and H.-P. Kriegel. Fast group recommendations by applying user clustering. Int'l Conf. on Conceptual Modeling, pages 126--140, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. S. Rendle, Z. Gantner, C. Freudenthaler, and L. Schmidt-Thieme. Fast context-aware recommendations with factorization machines. SIGIR, pages 635--644, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. R. Salakhutdinov and G. Hinton. Semantic hashing. SIGIR, pages 969--978, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. K. Sugiyama, K. Hatano, and M. Yoshikawa. Adaptive web search based on user profile constructed without any effort from users. WWW, pages 675--684, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. M. N. Volkovs and R. S. Zemel. Collaborative ranking with 17 parameters. NIPS, pages 2303--2311, 2012.Google ScholarGoogle Scholar
  27. J. Wang, S. Kumar, and S. Chang. Semi-supervised hashing for large-scale search. TPAMI, pages 2393--2406, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Q. Wang, L. Ruan, Z. Zhang, and L. Si. Learning compact hashing codes for efficient tag completion and prediction. CIKM, pages 1789--1794, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Q. Wang, D. Zhang, and L. Si. Semantic hashing using tags and topic modeling. SIGIR, pages 213--222, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. M. Weimer, A. Karatzoglou, Q. Le, and A. Smola. $\textrmCOFI^RANK$: Maximum margin matrix factorization for collaborative ranking. NIPS, 2007.Google ScholarGoogle Scholar
  31. Y. Weiss, A. Torralba, and R. Fergus. Spectral hashing. NIPS, 2008.Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. X. Yang, H. Steck, Y. Guo, and Y. Liu. On top-k recommendation using social networks. RecSys, pages 67--74, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. H. Yu, C. Hsieh, S. Si, and I. Dhillon. Scalable coordinate descent approaches to parallel matrix factorization for recommender systems. ICDM, pages 765--774, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. D. Zhang, F. Wang, and L. Si. Composite hashing with multiple information sources. SIGIR, pages 225--234, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. D. Zhang, J. Wang, D. Cai, and J. Lu. Self-taught hashing for fast similarity search. SIGIR, pages 18--25, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. G. Zhao, M. L. Lee, W. Hsu, and W. Chen. Increasing temporal diversity with purchase intervals. SIGIR, pages 165--174, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. K. Zhou and H. Zha. Learning binary codes for collaborative filtering. KDD, pages 498--506, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. P. Zigoris and Y. Zhang. Bayesian adaptive user profiling with explicit & implicit feedback. CIKM, pages 397--404, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Preference preserving hashing for efficient recommendation

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        SIGIR '14: Proceedings of the 37th international ACM SIGIR conference on Research & development in information retrieval
        July 2014
        1330 pages
        ISBN:9781450322577
        DOI:10.1145/2600428

        Copyright © 2014 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 3 July 2014

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

        Acceptance Rates

        SIGIR '14 Paper Acceptance Rate82of387submissions,21%Overall Acceptance Rate792of3,983submissions,20%

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader