skip to main content
10.1145/2600428.2609581acmconferencesArticle/Chapter ViewAbstractPublication PagesirConference Proceedingsconference-collections
research-article

Query-performance prediction: setting the expectations straight

Authors Info & Claims
Published:03 July 2014Publication History

ABSTRACT

The query-performance prediction task has been described as estimating retrieval effectiveness in the absence of relevance judgments. The expectations throughout the years were that improved prediction techniques would translate to improved retrieval approaches. However, this has not yet happened. Herein we provide an in-depth analysis of why this is the case. To this end, we formalize the prediction task in the most general probabilistic terms. Using this formalism we draw novel connections between tasks --- and methods used to address these tasks --- in federated search, fusion-based retrieval, and query-performance prediction. Furthermore, using formal arguments we show that the ability to estimate the probability of effective retrieval with no relevance judgments (i.e., to predict performance) implies knowledge of how to perform effective retrieval. We also explain why the expectation that using previously proposed query-performance predictors would help to improve retrieval effectiveness was not realized. This is due to a misalignment with the actual goal for which these predictors were devised: ranking queries based on the presumed effectiveness of using them for retrieval over a corpus with a specific retrieval method. Focusing on this specific prediction task, namely query ranking by presumed effectiveness, we present a novel learning-to-rank-based approach that uses Markov Random Fields. The resultant prediction quality substantially transcends that of state-of-the-art predictors.

References

  1. J. Allan, M. E. Connell, W. B. Croft, F.-F. Feng, D. Fisher, and X. Li. INQUERY and TREC-9. In Proc. of TREC-9, pages 551--562, 2000.Google ScholarGoogle Scholar
  2. G. Amati, C. Carpineto, and G. Romano. Query difficulty, robustness, and selective application of query expansion. In Proc. of ECIR, pages 127--137, 2004.Google ScholarGoogle ScholarCross RefCross Ref
  3. C. C. V. ant Garrison W. Cottrell. Fusion via linear combination of scores. Information Retrieval, 1(3):151--173, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. J. A. Aslam and V. Pavlu. Query hardness estimation using Jensen-Shannon divergence among multiple scoring functions. In Proc. of ECIR, pages 198--209, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. N. Balasubramanian and J. Allan. Learning to select rankers. In Proc. of SIGIR, pages 855--856, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. N. Balasubramanian, G. Kumaran, and V. R. Carvalho. Predicting query performance on the web. In Proc. of SIGIR, pages 785--786, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. S. M. Beitzel, E. C. Jensen, A. Chowdhury, O. Frieder, D. A. Grossman, and N. Goharian. Disproving the fusion hypothesis: An analysis of data fusion via effective information retrieval strategies. In Proc. of SAC, pages 823--827, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. M. Bendersky, W. B. Croft, and Y. Diao. Quality-biased ranking of web documents. In Proc. of WSDM, pages 95--104, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Y. Bernstein, B. Billerbeck, S. Garcia, N. Lester, F. Scholer, and J. Zobel. RMIT university at trec 2005: Terabyte and robust track. In Proc. of TREC-14, 2005.Google ScholarGoogle Scholar
  10. J. Callan. Distributed information retrieval. In W. Croft, editor, Advances in information retrieval, chapter 5, pages 127--150. Kluwer Academic Publishers, 2000.Google ScholarGoogle Scholar
  11. D. Carmel and E. Yom-Tov. Estimating the Query Difficulty for Information Retrieval. Synthesis lectures on information concepts, retrieval, and services. Morgan & Claypool, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. D. Carmel, E. Yom-Tov, A. Darlow, and D. Pelleg. What makes a query difficult? In Proc. of SIGIR, pages 390--397, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. G. V. Cormack, M. D. Smucker, and C. L. A. Clarke. Efficient and effective spam filtering and re-ranking for large web datasets. Informaltiom Retrieval Journal, 14(5):441--465, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. W. B. Croft. Combining approaches to information retrieval. In W. B. Croft, editor, Advances in information retrieval, chapter 1, pages 1--36. Kluwer Academic Publishers, 2000.Google ScholarGoogle Scholar
  15. S. Cronen-Townsend, Y. Zhou, and W. B. Croft. Predicting query performance. In Proc. of SIGIR, pages 299--306, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. S. Cronen-Townsend, Y. Zhou, and W. B. Croft. A language modeling framework for selective query expansion. Technical Report IR-338, Center for Intelligent Information Retrieval, University of Massachusetts, 2004.Google ScholarGoogle ScholarCross RefCross Ref
  17. R. Cummins. Predicting query performance directly from score distributions. In Proc. of AIRS, pages 315--326, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. R. Cummins, J. M. Jose, and C. O'Riordan. Improved query performance prediction using standard deviation. In Proc. of SIGIR, pages 1089--1090, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. F. Diaz. Performance prediction using spatial autocorrelation. In Proc. of SIGIR, pages 583--590, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. E. A. Fox and J. A. Shaw. Combination of multiple searches. In Proc. of TREC-2, 1994.Google ScholarGoogle Scholar
  21. C. Hauff and L. Azzopardi. When is query performance prediction effective? In Proc. of SIGIR, pages 829--830, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. C. Hauff, L. Azzopardi, and D. Hiemstra. The combination and evaluation of query performance prediction methods. In Proc. of ECIR, pages 301--312, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. C. Hauff, D. Hiemstra, and F. de Jong. A survey of pre-retrieval query performance predictors. In Proc. of CIKM, pages 1419--1420, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. C. Hauff, V. Murdock, and R. A. Baeza-Yates. Improved query difficulty prediction for the web. In Proc. of CIKM, pages 439--448, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. B. He and I. Ounis. Inferring query performance using pre-retrieval predictors. In Proc. of SPIRE, pages 43--54, 2004.Google ScholarGoogle ScholarCross RefCross Ref
  26. T. Joachims. Training linear svms in linear time. In Proc. of KDD, pages 217--226, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. O. Kurland, F. Raiber, and A. Shtok. Query-performance prediction and cluster ranking: Two sides of the same coin. In Proc. of CIKM, pages 2459--2462, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. O. Kurland, A. Shtok, D. Carmel, and S. Hummel. A unified framework for post-retrieval query-performance prediction. In Proc. of ICTIR, pages 15--26, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. O. Kurland, A. Shtok, S. Hummel, F. Raiber, D. Carmel, and O. Rom. Back to the roots: a probabilistic framework for query-performance prediction. In Proc. of CIKM, pages 823--832, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. V. Lavrenko and W. B. Croft. Relevance-based language models. In Proc. of SIGIR, pages 120--127, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. D. Lillis, F. Toolan, R. W. Collier, and J. Dunnion. Probfuse: a probabilistic approach to data fusion. In Proc. of SIGIR, pages 139--146, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. T.-Y. Liu. Learning to Rank for Information Retrieval. Springer, 2011.Google ScholarGoogle Scholar
  33. X. Liu and W. B. Croft. Cluster-based retrieval using language models. In Proc. of SIGIR, pages 186--193, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. X. Liu and W. B. Croft. Experiments on retrieval of optimal clusters. Technical Report IR-478, Center for Intelligent Information Retrieval (CIIR), University of Massachusetts, 2006.Google ScholarGoogle Scholar
  35. C. Macdonald, R. L. T. Santos, and I. Ounis. On the usefulness of query features for learning to rank. In Proc. of CIKM, pages 2559--2562, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. D. Metzler and W. B. Croft. A Markov random field model for term dependencies. In Proc. of SIGIR, pages 472--479, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. J. Mothe and L. Tanguy. Linguistic features to predict query difficulty. In ACM SIGIR 2005 Workshop on Predicting Query Difficulty - Methods and Applications, 2005.Google ScholarGoogle Scholar
  38. J. Pérez-Iglesias and L. Araujo. Standard deviation as a query hardness estimator. In Proc. of SPIRE, pages 207--212, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. F. Raiber and O. Kurland. Ranking document clusters using markov random fields. In Proc. of SIGIR, pages 333--342, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. F. Raiber and O. Kurland. Using document-quality measures to predict web-search effectiveness. In Proc. of ECIR, pages 134--145, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. F. Scholer and S. Garcia. A case for improved evaluation of query difficulty prediction. In Proc. of SIGIR, pages 640--641, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. F. Scholer, H. E. Williams, and A. Turpin. Query association surrogates for web search. JASIST, 55(7):637--650, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. D. Sheldon, M. Shokouhi, M. Szummer, and N. Craswell. Lambdamerge: merging the results of query reformulations. In Proc. of WSDM, pages 795--804, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. M. Shokouhi and L. Si. Federated search. Foundations and Trends in Information Retrieval, 5(1):1--102, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. A. Shtok, O. Kurland, and D. Carmel. Using statistical decision theory and relevance models for query-performance prediction. In Proc. of SIGIR, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. A. Shtok, O. Kurland, D. Carmel, F. Raiber, and G. Markovits. Predicting query performance by query-drift estimation. ACM Transactions on Information Systems, 30(2):11, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. I. Soboroff, C. K. Nicholas, and P. Cahan. Ranking retrieval systems without relevance judgments. In Proc. of SIGIR, pages 66--73, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. F. Song and W. B. Croft. A general language model for information retrieval (poster abstract). In Proc. of SIGIR, pages 279--280, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. K. Sparck Jones, S. Walker, and S. E. Robertson. A probabilistic model of information retrieval: development and comparative experiments - part 1. Information Processing and Management, 36(6):779--808, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. S. Tomlinson. Robust, Web and Terabyte Retrieval with Hummingbird Search Server at TREC 2004. In Proc. of TREC-13, 2004.Google ScholarGoogle Scholar
  51. V. Vinay, I. J. Cox, N. Milic-Frayling, and K. R. Wood. On ranking the effectiveness of searches. In Proc. of SIGIR, pages 398--404, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. E. Yom-Tov, S. Fine, D. Carmel, and A. Darlow. Learning to estimate query difficulty: including applications to missing content detection and distributed information retrieval. In Proc. of SIGIR, pages 512--519, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. Y. Zhao, F. Scholer, and Y. Tsegay. Effective pre-retrieval query performance prediction using similarity and variability evidence. In Proc. of ECIR, pages 52--64, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Y. Zhou and B. Croft. Ranking robustness: a novel framework to predict query performance. In Proc. of CIKM, pages 567--574, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. Y. Zhou and B. Croft. Query performance prediction in web search environments. In Proc. of SIGIR, pages 543--550, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Query-performance prediction: setting the expectations straight

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      SIGIR '14: Proceedings of the 37th international ACM SIGIR conference on Research & development in information retrieval
      July 2014
      1330 pages
      ISBN:9781450322577
      DOI:10.1145/2600428

      Copyright © 2014 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 3 July 2014

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      SIGIR '14 Paper Acceptance Rate82of387submissions,21%Overall Acceptance Rate792of3,983submissions,20%

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader