skip to main content
10.1145/2600918.2600922acmconferencesArticle/Chapter ViewAbstractPublication Pagesih-n-mmsecConference Proceedingsconference-collections
research-article

GSHADE: faster privacy-preserving distance computation and biometric identification

Published:11 June 2014Publication History

ABSTRACT

At WAHC'13, Bringer et al. introduced a protocol called SHADE for secure and efficient Hamming distance computation using oblivious transfer only. In this paper, we introduce a generalization of the SHADE protocol, called GSHADE, that enables privacy-preserving computation of several distance metrics, including (normalized) Hamming distance, Euclidean distance, Mahalanobis distance, and scalar product. GSHADE can be used to efficiently compute one-to-many biometric identification for several traits (iris, face, fingerprint) and benefits from recent optimizations of oblivious transfer extensions. GSHADE allows identification against a database of 1000 Eigenfaces in 1.28 seconds and against a database of 10000 IrisCodes in 17.2 seconds which is more than 10 times faster than previous works.

References

  1. G. Asharov, Y. Lindell, T. Schneider, and M. Zohner. More efficient oblivious transfer and extensions for faster secure computation. In Computer and Communications Security (CCS) , pages 535--548. ACM, 2013. Code available at http://encrypto.de/code/OTExtension. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. AT&T Laboratories Cambridge. The database of faces. http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html.Google ScholarGoogle Scholar
  3. M. Barni, T. Bianchi, D. Catalano, M. Di Raimondo, R. Donida Labati, P. Failla, D. Fiore, R. Lazzeretti, V. Piuri, F. Scotti, and A. Piva. Privacy-preserving fingercode authentication. In ACM workshop on Multimedia and Security (MMSEC), pages 231--240. ACM, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. P. N. Belhumeur, J. P. Hespanha, and D. J. Kriegman. Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection. In European Conference on Computer Vision (ECCV), volume 1064 of LNCS, pages 43--58. Springer, 1996. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. M. Blanton and P. Gasti. Secure and efficient protocols for iris and fingerprint identification. In European Symposium on Research in Computer Security (ESORICS) , volume 6879 of LNCS, pages 190--209. Springer, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. D. Bogdanov, R. Talviste, and J. Willemson. Deploying secure multi-party computation for financial data analysis. In Financial Cryptography (FC), volume 7397 of LNCS, pages 57--64. Springer, 2012.Google ScholarGoogle Scholar
  7. P. Bogetoft, D. L. Christensen, I. Damgård, M. Geisler, T. P. Jakobsen, M. Króigaard, J. D. Nielsen, J. B. Nielsen, K. Nielsen, J. Pagter, M. I. Schwartzbach, and T. Toft. Secure multiparty computation goes live. In Financial Cryptography (FC), volume 5628 of LNCS, pages 325--343. Springer, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. J. Bringer, H. Chabanne, and A. Patey. Privacy-preserving biometric identification using secure multiparty computation: An overview and recent trends. IEEE Signal Processing Magazine, 30(2):42--52, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  9. J. Bringer, H. Chabanne, and A. Patey. SHADE: Secure HAmming DistancE computation from oblivious transfer. In Workshop on Applied Homomorphic Cryptography (WAHC), volume 7862 of LNCS, pages 164--176. Springer, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  10. J. Bringer, M. Favre, H. Chabanne, and A. Patey. Faster secure computation for biometric identification using filtering. In IAPR International Conference on Biometrics (ICB), pages 257--264. IEEE, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  11. Carnegie Mellon University. The CMU Multi-PIE face database. http://www.multipie.org.Google ScholarGoogle Scholar
  12. S. G. Choi, K.-W. Hwang, J. Katz, T. Malkin, and D. Rubenstein. Secure multi-party computation of Boolean circuits with applications to privacy in on-line marketplaces. In Cryptographers' Track at the RSA Conference (CT-RSA), volume 7178 of LNCS, pages 416--432. Springer, 2012. Code available at http://www.ee.columbia.edu/~kwhwang/projects/gmw.html. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. R. Cramer, I. Damgård, and J. B. Nielsen. Multiparty computation from threshold homomorphic encryption. In EUROCRYPT, volume 2045 of LNCS, pages 280--300. Springer, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. E. D. Cristofaro and G. Tsudik. Practical private set intersection protocols with linear complexity. In Financial Cryptography (FC), volume 6052 of LNCS, pages 143--159. Springer, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. I. Damgård, M. Geisler, and M. Krøigaard. Efficient and secure comparison for on-line auctions. In Australasian Conference on Information Security and Privacy (ACISP), volume 4586 of LNCS, pages 416--430. Springer, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. J. Daugman. How iris recognition works. IEEE Transactions on Circuits and Systems for Video Technology, 14(1):21--30, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. C. Dong, L. Chen, and Z. Wen. When private set intersection meets big data: An efficient and scalable protocol. In Computer and Communications Security (CCS), pages 789--800. ACM, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Z. Erkin, M. Franz, J. Guajardo, S. Katzenbeisser, I. Lagendijk, and T. Toft. Privacy-preserving face recognition. In Privacy Enhancing Technologies Symposium (PETS), volume 5672 of LNCS, pages 235--253. Springer, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. S. Even, O. Goldreich, and A. Lempel. A randomized protocol for signing contracts. In CRYPTO, pages 205--210. Springer, 1982.Google ScholarGoogle Scholar
  20. C. Gentry. Fully homomorphic encryption using ideal lattices. In Symposium on Theory of Computing (STOC), pages 169--178. ACM, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game or a completeness theorem for protocols with honest majority. In Symposium on Theory of Computing (STOC), pages 218--229. ACM, 1987. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. R. Gross, I. Matthews, J. F. Cohn, T. Kanade, and S. Baker. Multi-PIE. Image Vision and Computing, 28(5):807--813, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. M. Günther, R. Wallace, and S. Marcel. An open source framework for standardized comparisons of face recognition algorithms. In Benchmarking Facial Image Analysis Technologies (BeFIT), volume 7585 of LNCS, pages 547--556. Springer, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. C. Hazay and Y. Lindell. Efficient Secure Two-Party Protocols - Techniques and Constructions. Information Security and Cryptography. Springer, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. W. Henecka, S. Kögl, A.-R. Sadeghi, T. Schneider, and I. Wehrenberg. TASTY: Tool for Automating Secure Two-partY computations. In Computer and Communications Security (CCS), pages 451--462, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Y. Huang, D. Evans, and J. Katz. Private set intersection: Are garbled circuits better than custom protocols? In Network and Distributed System Security Symposium (NDSS). The Internet Society, 2012.Google ScholarGoogle Scholar
  27. Y. Huang, D. Evans, J. Katz, and L. Malka. Faster secure two-party computation using garbled circuits. In USENIX Security Symposium. USENIX Association, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Y. Huang, L. Malka, D. Evans, and J. Katz. Efficient privacy-preserving biometric identification. In Network and Distributed System Security Symposium (NDSS). The Internet Society, 2011.Google ScholarGoogle Scholar
  29. Idiap Research Institute. Face recognition library. https://pypi.python.org/pypi/facereclib.Google ScholarGoogle Scholar
  30. Y. Ishai, J. Kilian, K. Nissim, and E. Petrank. Extending oblivious transfers efficiently. In CRYPTO, volume 2729 of LNCS, pages 145--161. Springer, 2003.Google ScholarGoogle Scholar
  31. A. K. Jain, S. Prabhakar, L. Hong, and S. Pankanti. FingerCode: A filterbank for fingerprint representation and matching. In Computer Vision and Pattern Recognition (CVPR) , pages 187--193. IEEE, 1999.Google ScholarGoogle ScholarCross RefCross Ref
  32. V. Kolesnikov and R. Kumaresan. Improved OT extension for transferring short secrets. In CRYPTO, volume 8043 of LNCS, pages 54--70. Springer, 2013.Google ScholarGoogle Scholar
  33. V. Kolesnikov and T. Schneider. Improved garbled circuit: Free XOR gates and applications. In International Colloquium on Automata, Languages and Programming (ICALP) , volume 5126 of LNCS, pages 486--498. Springer, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. S. Z. Li and A. K. Jain, editors. Encyclopedia of Biometrics. Springer, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Y. Luo, S.-C. S. Cheung, T. Pignata, R. Lazzeretti, and M. Barni. An efficient protocol for private iris-code matching by means of garbled circuits. In International Conference on Image Processing (ICIP), pages 2653--2656. IEEE, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  36. M. Naor and B. Pinkas. Efficient oblivious transfer protocols. In Symposium On Discrete Algorithms (SODA), pages 448--457. ACM/SIAM, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. M. Naor, B. Pinkas, and R. Sumner. Privacy preserving auctions and mechanism design. In Conference on Electronic Commerce (EC), pages 129--139. ACM, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. M. Osadchy, B. Pinkas, A. Jarrous, and B. Moskovich. SCiFI - a system for secure face identification. In IEEE Symposium on Security and Privacy (S&P), pages 239--254. IEEE, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. P. Paillier. Public-key cryptosystems based on composite degree residuosity classes. In EUROCRYPT, volume 1592 of LNCS, pages 223--238. Springer, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. M. O. Rabin. How to exchange secrets with oblivious transfer, TR-81 edition, 1981. Aiken Computation Lab, Harvard University.Google ScholarGoogle Scholar
  41. A.-R. Sadeghi, T. Schneider, and I. Wehrenberg. Efficient privacy-preserving face recognition. In International Conference on Information Security and Cryptology (ICISC), volume 5984 of LNCS, pages 229--244. Springer, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. T. Schneider and M. Zohner. GMW vs. Yao? Efficient secure two-party computation with low depth circuits. In Financial Cryptography (FC), volume 7859 of LNCS, pages 275--292. Springer, 2013.Google ScholarGoogle Scholar
  43. S. F. Shahandashti, R. Safavi-Naini, and P. Ogunbona. Private fingerprint matching. In Australasian Conference on Information Security and Privacy (ACISP), volume 7372 of LNCS, pages 426--433. Springer, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. M. Turk and A. Pentland. Eigenfaces for recognition. Journal of Cognitive Neuroscience, 3(1):71--86, 1991. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. A. C.-C. Yao. How to generate and exchange secrets (extended abstract). In Foundations of Computer Science (FOCS), pages 162--167. IEEE, 1986. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. GSHADE: faster privacy-preserving distance computation and biometric identification

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        IH&MMSec '14: Proceedings of the 2nd ACM workshop on Information hiding and multimedia security
        June 2014
        212 pages
        ISBN:9781450326476
        DOI:10.1145/2600918

        Copyright © 2014 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 11 June 2014

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

        Acceptance Rates

        IH&MMSec '14 Paper Acceptance Rate24of64submissions,38%Overall Acceptance Rate128of318submissions,40%

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader