skip to main content
research-article

Temporal frequency probing for 5D transient analysis of global light transport

Published:27 July 2014Publication History
Skip Abstract Section

Abstract

We analyze light propagation in an unknown scene using projectors and cameras that operate at transient timescales. In this new photography regime, the projector emits a spatio-temporal 3D signal and the camera receives a transformed version of it, determined by the set of all light transport paths through the scene and the time delays they induce. The underlying 3D-to-3D transformation encodes scene geometry and global transport in great detail, but individual transport components (e.g., direct reflections, inter-reflections, caustics, etc.) are coupled nontrivially in both space and time.

To overcome this complexity, we observe that transient light transport is always separable in the temporal frequency domain. This makes it possible to analyze transient transport one temporal frequency at a time by trivially adapting techniques from conventional projector-to-camera transport. We use this idea in a prototype that offers three never-seen-before abilities: (1) acquiring time-of-flight depth images that are robust to general indirect transport, such as interreflections and caustics; (2) distinguishing between direct views of objects and their mirror reflection; and (3) using a photonic mixer device to capture sharp, evolving wavefronts of "light-in-flight".

Skip Supplemental Material Section

Supplemental Material

a87-sidebyside.mp4

mp4

11.8 MB

References

  1. Bai, J., Chandraker, M., Ng, T.-T., and Ramamoorthi, R. 2010. A dual theory of inverse and forward light transport. In Proc. ECCV, 294--307. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Debevec, P., Hawkins, T., Tchou, C., Duiker, H.-P., Sarokin, W., and Sagar, M. 2000. Acquiring the reflectance field of a human face. ACM SIGGRAPH, 145--156. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Dorrington, A., Godbaz, J., Cree, M., Payne, A., and Streeter, L. 2011. Separating true range measurements from multi-path and scattering interference in commercial range cameras. In Proc. SPIE, vol. 7864.Google ScholarGoogle Scholar
  4. Fuchs, S. 2010. Multipath interference compensation in time-of-flight camera images. In Proc. ICPR, 3583--3586. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Garg, G., Talvala, E.-V., Levoy, M., and Lensch, H. P. 2006. Symmetric photography: exploiting data-sparseness in reflectance fields. In Proc. EGSR, 251--262. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Godbaz, J. P., Cree, M. J., and Dorrington, A. A. 2012. Closed-form inverses for the mixed pixel/multipath interference problem in amcw lidar. In Proc. SPIE, vol. 8296.Google ScholarGoogle Scholar
  7. Goral, C. M., Torrance, K. E., Greenberg, D. P., and Battaile, B. 1984. Modeling the interaction of light between diffuse surfaces. ACM SIGGRAPH, 213--222. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Gupta, M., and Nayar, S. K. 2012. Micro phase shifting. In Proc. ICCV, 813--820. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Heide, F., Hullin, M. B., Gregson, J., and Heidrich, W. 2013. Low-budget transient imaging using photonic mixer devices. ACM SIGGRAPH, 45:1--45:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Hlawitschka, M., Ebling, J., and Scheuermann, G. 2004. Convolution and fourier transform of second order tensor fields. In Proc. IASTED VIIP, 78--83.Google ScholarGoogle Scholar
  11. Jiménez, D., Pizarro, D., Mazo, M., and Palazuelos, S. 2014. Modeling and correction of multipath interference in time of flight cameras. Image and Vision Computing 32, 1, 1--13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Kadambi, A., Whyte, R., Bhandari, A., Streeter, L., Barsi, C., Dorrington, A., and Raskar, R. 2013. Coded time of flight cameras: sparse deconvolution to address multi-path interference and recover time profiles. ACM Trans. Graph. 32, 6, 167:1--167:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Kajiya, J. T. 1986. The rendering equation. ACM SIGGRAPH, 143--150. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Kirmani, A., Hutchison, T., Davis, J., and Raskar, R. 2011. Looking around the corner using ultrafast transient imaging. Int. J. of Computer Vision 95, 13--28. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Kirmani, A., Colaco, A., Wong, F. N. C., and Goyal, V. K. 2012. Codac: a compressive depth acquisition camera framework. In Proc. ICASSP, 5425--5428.Google ScholarGoogle Scholar
  16. Kirmani, A., Venkatraman, D., Shin, D., Colaco, A., Wong, F. N. C., Shapiro, J. H., and Goyal, V. K. 2013. First-photon imaging. Science.Google ScholarGoogle Scholar
  17. Mei, J., Kirmani, A., Colaco, A., and Goyal, V. 2013. Phase unwrapping and denoising for time-of-flight imaging using generalized approximate message passing. In Proc. ICIP, 364--368.Google ScholarGoogle Scholar
  18. Nayar, S. K., Krishnan, G., Grossberg, M. D., and Raskar, R. 2006. Fast separation of direct and global components of a scene using high frequency illumination. ACM SIGGRAPH, 935--944. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Ng, R., Ramamoorthi, R., and Hanrahan, P. 2003. All-frequency shadows using non-linear wavelet lighting approximation. ACM SIGGRAPH, 376--381. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. O'Toole, M., and Kutulakos, K. N. 2010. Optical computing for fast light transport analysis. ACM Trans. Graph., 164:1--164:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. O'Toole, M., Raskar, R., and Kutulakos, K. N. 2012. Primal-dual coding to probe light transport.Google ScholarGoogle Scholar
  22. O'Toole, M., Mather, J., and Kutulakos, K. N. 2014. 3D shape and indirect appearance by structured light transport. In Proc. CVPR.Google ScholarGoogle Scholar
  23. Peers, P., Mahajan, D. K., Lamond, B., Ghosh, A., Matusik, W., Ramamoorthi, R., and Debevec, P. 2009. Compressive light transport sensing. ACM Trans. Graph. 28, 1. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Reddy, D., Ramamoorthi, R., and Curless, B. 2012. Frequency-space decomposition and acquisition of light transport under spatially varying illumination. In Proc. ECCV, 596--610. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Seitz, S. M., Matsushita, Y., and Kutulakos, K. N. 2005. A theory of inverse light transport. In Proc. ICCV, 1440--1447. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Sen, P., and Darabi, S. 2009. Compressive dual photography. Computer Graphics Forum 28, 2, 609--618.Google ScholarGoogle ScholarCross RefCross Ref
  27. Sen, P., Chen, B., Garg, G., Marschner, S., Horowitz, M., Levoy, M., and Lensch, H. P. A. 2005. Dual photography. ACM SIGGRAPH, 745--755. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Velten, A., Willwacher, T., Gupta, O., Veeraraghavan, A., Bawendi, M. G., and Raskar, R. 2012. Recovering three-dimensional shape around a corner using ultrafast time-of-flight imaging. Nature Communications.Google ScholarGoogle Scholar
  29. Velten, A., Wu, D., Jarabo, A., Masia, B., Barsi, C., Joshi, C., Lawson, E., Bawendi, M., Gutierrez, D., and Raskar, R. 2013. Femto-photography: capturing and visualizing the propagation of light. ACM Trans. Graph. 32, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Wetzstein, G., and Bimber, O. 2007. Radiometric compensation through inverse light transport. 391--399. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Wu, D., O'Toole, M., Velten, A., Agrawal, A., and Raskar, R. 2012. Decomposing global light transport using time of flight imaging. In Proc. CVPR, 366--373. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Wu, D., Wetzstein, G., Barsi, C., Willwacher, T., Dai, Q., and Raskar, R. 2013. Ultra-fast lensless computational imaging through 5d frequency analysis of time-resolved light transport. Int. J. of Computer Vision, 1--13.Google ScholarGoogle Scholar

Index Terms

  1. Temporal frequency probing for 5D transient analysis of global light transport

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 33, Issue 4
      July 2014
      1366 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/2601097
      Issue’s Table of Contents

      Copyright © 2014 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 27 July 2014
      Published in tog Volume 33, Issue 4

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader