skip to main content
10.1145/2649387.2649450acmconferencesArticle/Chapter ViewAbstractPublication PagesbcbConference Proceedingsconference-collections
research-article

Pathway analysis with signaling hypergraphs

Authors Info & Claims
Published:20 September 2014Publication History

ABSTRACT

Signaling pathways play an important role in the cell's response to its environment. Signaling pathways are often represented as directed graphs, which are not adequate for modeling reactions such as complex assembly and dissociation, combinatorial regulation, and protein activation/inactivation. More accurate representations such as directed hypergraphs remain underutilized. In this paper, we present an extension of a directed hypergraph that we call a signaling hypergraph. We formulate a problem that asks what proteins and interactions must be involved in order to stimulate a specific response downstream of a signaling pathway. We relate this problem to computing the shortest acyclic B-hyperpath in a signaling hypergraph --- an NP-hard problem --- and present a mixed integer linear program to solve it. We demonstrate that the shortest hyperpaths computed in signaling hypergraphs are far more informative than shortest paths found in corresponding graph representations. Our results illustrate the potential of signaling hypergraphs as an improved representation of signaling pathways and motivate the development of novel hypergraph algorithms.

References

  1. G. Ausiello, R. Giaccio, G. F. Italiano, and U. Nanni. Optimal traversal of directed hypergraphs. Technical report, 1992.Google ScholarGoogle Scholar
  2. M. Bailly-Bechet, C. Borgs, A. Braunstein, J. Chayes, A. Dagkessamanskaia, J. M. François, and R. Zecchina. Finding undetected protein associations in cell signaling by belief propagation. Proceedings of the National Academy of Sciences, 108(2):882--887, Jan. 2011.Google ScholarGoogle ScholarCross RefCross Ref
  3. C. Berge. Hypergraphs, Volume 45: Combinatorics of Finite Sets (North-Holland Mathematical Library). North Holland, 1 edition, Aug. 1989.Google ScholarGoogle Scholar
  4. R. Cambini, G. Gallo, and M. Scutellà. Flows on hypergraphs. Mathematical Programming, 78(2):195--217, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. D. Croft, G. O'Kelly, G. Wu, R. Haw, M. Gillespie, L. Matthews, M. Caudy, P. Garapati, G. Gopinath, B. Jassal, S. Jupe, I. Kalatskaya, S. Mahajan, B. May, N. Ndegwa, E. Schmidt, V. Shamovsky, C. Yung, E. Birney, H. Hermjakob, P. D'Eustachio, and L. Stein. Reactome: a database of reactions, pathways and biological processes. Nucleic Acids Research, 39(Database issue):D691--D697, Jan. 2011.Google ScholarGoogle Scholar
  6. E. Demir, Ö. Babur, I. Rodchenkov, B. A. Aksoy, K. I. Fukuda, B. Gross, O. S. Sümer, G. D. Bader, and C. Sander. Using biological pathway data with Paxtools. PLOS Computational Biology, 9(9):e1003194, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  7. E. Demir et al. The BioPAX community standard for pathway data sharing. Nature Biotechnology, 28(9):935--942, 2010.Google ScholarGoogle ScholarCross RefCross Ref
  8. U. Dogrusoz, A. Cetintas, E. Demir, and O. Babur. Algorithms for effective querying of compound graph-based pathway databases. BMC Bioinformatics, 10(376), 2009.Google ScholarGoogle Scholar
  9. K. Fukuda and T. Takagi. Knowledge representation of signal transduction pathways. Bioinformatics, 17(9):829--837, 2001.Google ScholarGoogle ScholarCross RefCross Ref
  10. S. R. Gallagher and D. S. Goldberg. Clustering coefficients in protein interaction hypernetworks. In Proceedings of the International Conference on Bioinformatics, Computational Biology and Biomedical Informatics, BCB'13, pages 552:552--552:560, New York, NY, USA, 2013. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. G. Gallo, G. Longo, S. Pallottino, and S. Nguyen. Directed hypergraphs and applications. Discrete Applied Mathematics, 42(2-3):177--201, 1993. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. I. Gat-Viks and R. Shamir. Refinement and expansion of signaling pathways: the osmotic response network in yeast. Genome Research, 17(3):358--67, 2007.Google ScholarGoogle ScholarCross RefCross Ref
  13. L. S. Heath and A. A. Sioson. Semantics of multimodal network models. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 6(2):271--280, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. J. Hendriksen, F. Fagotto, H. van der Velde, M. van Schie, J. Noordermeer, and M. Fornerod. RanBP3 enhances nuclear export of active (beta)-catenin independently of CRM1. J. Cell Biol., 171(5):785--797, Dec 2005.Google ScholarGoogle ScholarCross RefCross Ref
  15. Z. Hu, J. Mellor, J. Wu, M. Kanehisa, J. M. Stuart, and C. DeLisi. Towards zoomable multidimensional maps of the cell. Nature Biotechnology, 25(5):547--554, May 2007.Google ScholarGoogle ScholarCross RefCross Ref
  16. M. Kanehisa, S. Goto, Y. Sato, M. Furumichi, and M. Tanabe. KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Research, 40(Database issue):D109--114, Jan 2012.Google ScholarGoogle Scholar
  17. G. Karlebach and R. Shamir. Modelling and analysis of gene regulatory networks. Nature Reviews Molecular Cell Biology, 9(10):770--780, September 2008.Google ScholarGoogle ScholarCross RefCross Ref
  18. S. Klamt, U.-U. Haus, and F. Theis. Hypergraphs and cellular networks. PLoS Computational Biology, 5(5):e1000385, 2009.Google ScholarGoogle ScholarCross RefCross Ref
  19. K. E. Knudsen, W. K. Cavenee, and K. C. Arden. D-type cyclins complex with the androgen receptor and inhibit its transcriptional transactivation ability. Cancer Res., 59(10):2297--2301, May 1999.Google ScholarGoogle Scholar
  20. H. Li, J. H. Kim, S. S. Koh, and M. R. Stallcup. Synergistic effects of coactivators GRIP1 and beta-catenin on gene activation: cross-talk between androgen receptor and Wnt signaling pathways. J. Biol. Chem., 279(6):4212--4220, Feb 2004.Google ScholarGoogle ScholarCross RefCross Ref
  21. D. Machado, R. S. Costa, M. Rocha, E. C. Ferreira, B. Tidor, and I. Rocha. Modeling formalisms in Systems Biology. AMB Express, 1(1):45--14, Dec. 2011.Google ScholarGoogle ScholarCross RefCross Ref
  22. H. Matsuno, Y. Tanaka, A. H., A. Doi, M. Matsui, and S. Miyano. Biopathways representation and simulation on hybrid functional petri net. In Silico Biol., 3(3):389--404, 2003.Google ScholarGoogle Scholar
  23. A. Ritz, A. N. Tegge, H. Kim, C. L. Poirel, and T. Murali. Signaling hypergraphs. Trends in Biotechnology, 32(7):356--362, 2014.Google ScholarGoogle ScholarCross RefCross Ref
  24. R. Samaga and S. Klamt. Modeling approaches for qualitative and semi-quantitative analysis of cellular signaling networks. Cell Commun. Signal, 11(1):43, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  25. C. F. Schaefer, K. Anthony, S. Krupa, J. Buchoff, M. Day, T. Hannay, and K. H. Buetow. PID: the Pathway Interaction Database. Nucleic Acids Research, 37(Database issue):D674--D679, 2009.Google ScholarGoogle Scholar
  26. M. Thakur and R. Tripathi. Linear connectivity problems in directed hypergraphs. Theoretical Computer Science, 410(27):2592--2618, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. C. J. Vaske, S. C. Benz, J. Z. Sanborn, D. Earl, C. Szeto, J. Zhu, D. Haussler, and J. M. Stuart. Inference of patient-specific pathway activities from multi-dimensional cancer genomics data using PARADIGM. Bioinformatics, 26(12):i237--i245, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Pathway analysis with signaling hypergraphs

              Recommendations

              Comments

              Login options

              Check if you have access through your login credentials or your institution to get full access on this article.

              Sign in
              • Published in

                cover image ACM Conferences
                BCB '14: Proceedings of the 5th ACM Conference on Bioinformatics, Computational Biology, and Health Informatics
                September 2014
                851 pages
                ISBN:9781450328944
                DOI:10.1145/2649387
                • General Chairs:
                • Pierre Baldi,
                • Wei Wang

                Copyright © 2014 ACM

                Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

                Publisher

                Association for Computing Machinery

                New York, NY, United States

                Publication History

                • Published: 20 September 2014

                Permissions

                Request permissions about this article.

                Request Permissions

                Check for updates

                Qualifiers

                • research-article

                Acceptance Rates

                Overall Acceptance Rate254of885submissions,29%

              PDF Format

              View or Download as a PDF file.

              PDF

              eReader

              View online with eReader.

              eReader