skip to main content
10.1145/2660168.2660170acmotherconferencesArticle/Chapter ViewAbstractPublication PagesdlfmConference Proceedingsconference-collections
research-article

A Musical Progression with Greenstone: How Music Content Analysis and Linked Data is Helping Redefine the Boundaries to a Music Digital Library

Published:12 September 2014Publication History

ABSTRACT

Despite the recasting of the web's technical capabilities through Web 2.0, conventional digital library software architectures---from which many of our leading Music Digital Libraries (MDLs) are formed---result in digital resources that are, surprisingly, disconnected from other online sources of information, and embody a "read-only" mindset. Leveraging from Music Information Retrieval (MIR) techniques and Linked Open Data (LOD), in this paper we demonstrate a new form of music digital library that encompasses management, discovery, delivery, and analysis of the musical content it contains. Utilizing open source tools such as Greenstone, audioDB, Meandre, and Apache Jena we present a series of transformations to a musical digital library sourced from audio files that steadily increases the level of support provided to the user for musicological study. While the seed for this work was motivated by better supporting musicologists in a digital library, the developed software architecture alters the boundaries to what is conventionally thought of as a digital library---and in doing so challenges core assumptions made in mainstream digital library software design.

References

  1. B. Ács, X. Llorà, L. Auvil, B. Capitanu, D. Tcheng, M. Haberman, L. Dong, T. Wentling, and M. Welge. A general approach to data-intensive computing using the meandre component-based framework. In Proceedings of the 1st International Workshop on Workflow Approaches to New Data-centric Science, pages 8:1--8:12, New York, NY, USA, 2010. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. D. Bainbridge. MELDEX: A web-based melodic index service. Computing in musicology: a directory of research, 11:223--229, 1998.Google ScholarGoogle Scholar
  3. D. Bainbridge and N. Carter. Automatic reading of music notation. Handbook of Character recognition and document image analysis, pages 583--603, 1997.Google ScholarGoogle Scholar
  4. D. Bainbridge, S. J. Cunningham, and J. S. Downie. How people describe their music information needs: A grounded theory analysis of music queries. In Proceedings of the International Symposium on Music Information Retrieval, pages 221--222, 2003.Google ScholarGoogle Scholar
  5. D. Bainbridge, K. J. Don, G. R. Buchanan, I. H. Witten, S. Jones, M. Jones, and M. I. Barr. Dynamic digital library construction and configuration. Research and Advanced Technology for Digital Libraries, pages 1--13, 2004.Google ScholarGoogle ScholarCross RefCross Ref
  6. D. Bainbridge, I. H. Witten, S. Boddie, and J. Thompson. Stress-testing general purpose digital library software. In Research and Advanced Technology for Digital Libraries, pages 203--214. Springer, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. J. S. Breese, D. Heckerman, and C. Kadie. Empirical analysis of predictive algorithms for collaborative filtering. In Proceedings of the Fourteenth conference on Uncertainty in artificial intelligence, pages 43--52. Morgan Kaufmann Publishers Inc., 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. G. Buchanan, D. Bainbridge, K. J. Don, and I. H. Witten. A new framework for building digital library collections. In Proceedings of the 5th ACM/IEEE-CS joint conference on Digital libraries, pages 23--31. ACM, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. H. Christenson. Hathitrust. Library Resources & Technical Services, 55(2):93--102, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  10. R. B. Dannenberg, W. P. Birmingham, B. Pardo, N. Hu, C. Meek, and G. Tzanetakis. A comparative evaluation of search techniques for query-by-humming using the MUSART testbed. Journal of the American Society for Information Science and Technology, 58(5):687--701, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. J. Foote, M. Cooper, and U. Nam. Audio retrieval by rhythmic similarity. In Proceedings of the International Conference on Music Information Retrieval, pages 265--266, 2002.Google ScholarGoogle Scholar
  12. A. Ghias, J. Logan, D. Chamberlin, and B. C. Smith. Query by humming: musical information retrieval in an audio database. In Proceedings of the third ACM international conference on Multimedia, pages 231--236. ACM, 1995. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. E. Gómez and J. Bonada. Tonality visualization of polyphonic audio. In Proceedings of International Computer Music Conference, 2005.Google ScholarGoogle Scholar
  14. A. Hinze and D. Bainbridge. Tipple: location-triggered mobile access to a digital library for audio books. In Proceedings of the 13th ACM/IEEE-CS joint conference on Digital libraries, pages 171--180. ACM, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. X. Hu and J. Liu. Evaluation of music information retrieval: Towards a user-centered approach. In Proceedings of the 4th Workshop on Human-Computer Interaction and Information Retrieval (HCIR), 2010.Google ScholarGoogle Scholar
  16. B. Kahle. Preserving the internet. Scientific American, 276(3):82--83, Mar. 1997.Google ScholarGoogle ScholarCross RefCross Ref
  17. C. Lagoze and H. Van de Sompel. The making of the Open Archives Initiative Protocol for Metadata Harvesting. Library hi tech, 21(2):118--128, 2003.Google ScholarGoogle Scholar
  18. C. McKay and D. Bainbridge. A musical web mining and audio feature extraction extension to the Greenstone digital library software. In Proceedings of the International Symposium on Music Information Retrieval, 2011.Google ScholarGoogle Scholar
  19. M. Müller. Information Retrieval for Music and Motion. Springer, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. M. Müller, M. Goto, and S. Dixon. Multimodal music processing (dagstuhl seminar 11041). Dagstuhl Reports, 1(1), 2011.Google ScholarGoogle Scholar
  21. C. A. Mullin. International music score library project/petrucci music library (review). Notes, 67(2):376--381, 2010.Google ScholarGoogle Scholar
  22. S. Pauws. CubyHum: a fully operational "query by humming" system. In Proceedings of the International Symposium on Music Information Retrieval, 2002.Google ScholarGoogle Scholar
  23. A. Rebelo, I. Fujinaga, F. Paszkiewicz, A. R. Marcal, C. Guedes, and J. S. Cardoso. Optical music recognition: state-of-the-art and open issues. International Journal of Multimedia Information Retrieval, 1(3):173--190, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  24. C. Rhodes, T. Crawford, M. Casey, and M. d'Inverno. Investigating music collections at different scales with audioDB. Journal of New Music Research, 39(4):337--348, 2010.Google ScholarGoogle ScholarCross RefCross Ref
  25. M. Schedl, A. Flexer, and J. Urbano. The neglected user in music information retrieval research. Journal of Intelligent Information Systems, 41(3):523--539, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. J. B. L. Smith, J. A. Burgoyne, I. Fujinaga, D. De Roure, and J. S. Downie. Design and creation of a large-scale database of structural annotations. In ISMIR, pages 555--560, 2011.Google ScholarGoogle Scholar
  27. M. Smith, M. R. Barton, M. Branschofsky, G. McClellan, J. H. Walker, M. J. Bass, D. Stuve, and R. Tansley. Dspace: An open source dynamic digital repository. DLib Magazine, 9, 2003.Google ScholarGoogle Scholar
  28. T. Staples, R. Wayland, and S. Payette. The Fedora project-an open-source digital object repository management system. D-Lib Magazine, 9(4), 2003.Google ScholarGoogle Scholar
  29. C. Strachey. Fundamental concepts in programming languages. Higher Order Symbol. Comput., 13(1-2):11--49, Apr. 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. R. Tansley and S. Harnad. Eprints.org software for creating institutional and individual open archives. D-Lib Magazine, 6(10), 2000.Google ScholarGoogle Scholar
  31. A. L.-C. Wang. An industrial-strength audio search algorithm. In Proceedings of the 4th International Conference on Music Information Retrieval, 2003.Google ScholarGoogle Scholar
  32. I. H. Witten and D. Bainbridge. The Greenstone digital library software. Handbook of Research on Digital Libraries, pages 61--72, 2009.Google ScholarGoogle ScholarCross RefCross Ref
  33. I. H. Witten, D. Bainbridge, and D. M. Nichols. How to Build a Digital Library, Second Edition. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2nd edition, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. I. H. Witten, A. Moffat, and T. C. Bell. Managing gigabytes: compressing and indexing documents and images. Morgan Kaufmann, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. M. Worring, P. Sajda, S. Santini, D. A. Shamma, A. F. Smeaton, and Q. Yang. Where is the user in multimedia retrieval? MultiMedia, IEEE, 19(4):6--10, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. A Musical Progression with Greenstone: How Music Content Analysis and Linked Data is Helping Redefine the Boundaries to a Music Digital Library

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Other conferences
        DLfM '14: Proceedings of the 1st International Workshop on Digital Libraries for Musicology
        September 2014
        102 pages
        ISBN:9781450330022
        DOI:10.1145/2660168

        Copyright © 2014 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 12 September 2014

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article
        • Research
        • Refereed limited

        Acceptance Rates

        Overall Acceptance Rate27of48submissions,56%

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader