skip to main content
research-article

FlexISP: a flexible camera image processing framework

Published:19 November 2014Publication History
Skip Abstract Section

Abstract

Conventional pipelines for capturing, displaying, and storing images are usually defined as a series of cascaded modules, each responsible for addressing a particular problem. While this divide-and-conquer approach offers many benefits, it also introduces a cumulative error, as each step in the pipeline only considers the output of the previous step, not the original sensor data. We propose an end-to-end system that is aware of the camera and image model, enforces natural-image priors, while jointly accounting for common image processing steps like demosaicking, denoising, deconvolution, and so forth, all directly in a given output representation (e.g., YUV, DCT). Our system is flexible and we demonstrate it on regular Bayer images as well as images from custom sensors. In all cases, we achieve large improvements in image quality and signal reconstruction compared to state-of-the-art techniques. Finally, we show that our approach is capable of very efficiently handling high-resolution images, making even mobile implementations feasible.

Skip Supplemental Material Section

Supplemental Material

References

  1. Adams, A., Talvala, E.-V., Park, S. H., Jacobs, D., Ajdin, B., Gelfand, N., Dolson, J., Vaquero, D., Baek, J., Tico, M., Lensch, H. P. A., Matusik, W., Pulli, K., Horowitz, M., and Levoy, M. 2010. The Frankencamera: an experimental platform for computational photography. ACM TOG 29, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Afonso, M. V., Bioucas-Dias, J. M., and Figueiredo, M. A. 2010. Fast image recovery using variable splitting and constrained optimization. IEEE TIP 19, 9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Ajdin, B., Hullin, M. B., Fuchs, C., Seidel, H.-P., and Lensch, H. 2008. Demosaicing by smoothing along 1d features. In CVPR.Google ScholarGoogle Scholar
  4. Bennett, E. P., Uyttendaele, M., Zitnick, C., Szeliski, R., and Kang, S. 2006. Video and image bayesian demosaicing with a two color image prior. In ECCV. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Brauers, J., Seiler, C., and Aach, T. 2010. Direct psf estimation using a random noise target. In Electronic Imaging.Google ScholarGoogle Scholar
  6. Buades, A., Coll, B., and Morel, J. M. 2005. A non-local algorithm for image denoising. In CVPR. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Buades, T., Lou, Y., Morel, J. M., and Tang, Z. 2009. A note on multi-image denoising. In Int. Workshop on Local and Non-Local Approximation in Image Processing.Google ScholarGoogle Scholar
  8. Buades, A., Coll, B., and Morel, J.-M. 2011. Non-Local Means Denoising. Image Processing On Line.Google ScholarGoogle Scholar
  9. Candès, E., and Donoho, D. 1999. Curvelets: A surprisingly effective nonadaptive representation of objects with edges. In Curves and Surfaces. Vanderbilt University Press.Google ScholarGoogle Scholar
  10. Chambolle, A., and Pock, T. 2011. A first-order primal-dual algorithm for convex problems with applications to imaging. Journal of Mathematical Imaging and Vision 40, 1. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Chatterjee, P., Joshi, N., Kang, S. B., and Matsushita, Y. 2011. Noise suppression in low-light images through joint denoising and demosaicing. In CVPR. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Coifman, R. R., and Donoho, D. L. 1995. Translation-invariant denoising. Tech. Rep. 475, Stanford University.Google ScholarGoogle Scholar
  13. Dabov, K., Foi, A., Katkovnik, V., and Egiazarian, K. 2007. Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE TIP 16, 8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Dabov, K., Foi, A., and Egiazarian, K. 2007. Video de-noising by sparse 3d transform-domain collaborative filtering. In European Signal Processing Conference.Google ScholarGoogle Scholar
  15. Dabov, K., Foi, A., Katkovnik, V., and Egiazarian, K. 2008. Image restoration by sparse 3d transform-domain collaborative filtering. In Electronic Imaging.Google ScholarGoogle Scholar
  16. Danielyan, A., Katkovnik, V., and Egiazarian, K. 2012. BM3D frames and variational image deblurring. IEEE TIP 21, 4.Google ScholarGoogle Scholar
  17. Egiazarian, K. O., Astola, J., Helsingius, M., and Kuosmanen, P. 1999. Adaptive denoising and lossy compression of images in transform domain. J. Electronic Imaging 8, 3.Google ScholarGoogle ScholarCross RefCross Ref
  18. Farsiu, S., Elad, M., and Milanfar, P. 2006. Multiframe demosaicing and superresolution of color image. IEEE TIP 15, 1. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Foi, A., Katkovnik, V., and Egiazarian, K. 2007. Pointwise shape-adaptive DCT for high-quality denoising and deblocking of grayscale and color images. IEEE TIP 16, 5. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Gu, J., Hitomi, Y., Mitsunaga, T., and Nayar, S. 2010. Coded rolling shutter photography: Flexible space-time sampling. In ICCP.Google ScholarGoogle Scholar
  21. Hajisharif, S., Kronander, J., and Unger, J. 2014. HDR reconstruction for alternating gain (ISO) sensor readout. In Proc. of Eurographics (short paper).Google ScholarGoogle Scholar
  22. Heide, F., Rouf, M., Hullin, M. B., Labitzke, B., Heidrich, W., and Kolb, A. 2013. High-quality computational imaging through simple lenses. ACM TOG 32, 5. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Irani, M., and Peleg, S. 1991. Improving resolution by image registration. Graphical Models and Image Processing 53, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Jeon, G., and Dubois, E. 2013. Demosaicking of noisy Bayer-sampled color images with least-squares luma-chroma demultiplexing and noise level estimation. IEEE TIP 22, 1.Google ScholarGoogle Scholar
  25. Joulin, A., and Kang, S. B. 2013. Recovering stereo pairs from anaglyphs. In CVPR. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Krishnan, D., and Fergus, R. 2009. Fast image deconvolution using hyper-laplacian priors. In NIPS.Google ScholarGoogle Scholar
  27. Levin, A., Fergus, R., Durand, F., and Freeman, W. T. 2007. Deconvolution using natural image priors. ACM Transactions on Graphics (TOG) 26, 3.Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Liu, C., Yuen, J., Torralba, A., Sivic, J., and Freeman, W. T. 2008. Sift flow: Dense correspondence across different scenes. In ECCV. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Liu, C. 2009. Beyond Pixels: Exploring New Representations and Applications for Motion Analysis. PhD thesis, MIT. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Mitra, K., Cossairt, O., and Veeraraghavan, A. 2014. A framework for analysis of computational imaging systems: Role of signal prior, sensor noise and multiplexing. ieee PAMI 36, 10.Google ScholarGoogle Scholar
  31. Mosseri, I., Zontak, M., and Irani, M. 2013. Combining the power of internal and external denoising. In ICCP.Google ScholarGoogle Scholar
  32. Narasimhan, S. G., and Nayar, S. K. 2005. Enhancing resolution along multiple imaging dimensions using assorted pixels. IEEE PAMI 27, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Nayar, S., and Branzoi, V. 2003. Adaptive dynamic range imaging: Optical control of pixel exposures over space and time. In ICCV. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Oymak, S., and Hassibi, B. 2013. Sharp MSE bounds for proximal denoising. arXiv preprint arXiv:1305.2714.Google ScholarGoogle Scholar
  35. Parikh, N., and Boyd, S. 2013. Proximal algorithms. Foundations and Trends in Optimization 1, 3.Google ScholarGoogle Scholar
  36. Ramanath, R., Snyder, W. E., Yoo, Y., and Drew, M. S. 2005. Color image processing pipeline in digital still cameras. IEEE Signal Processing Magazine 22, 1.Google ScholarGoogle ScholarCross RefCross Ref
  37. Reinhard, E., Ward, G., Pattanaik, S., Debevec, P., Heidrich, W., and Myszkowski, K. 2010. High dynamic range imaging: acquisition, display, and image-based lighting. Morgan Kaufmann.Google ScholarGoogle Scholar
  38. Roth, S., and Black, M. J. 2009. Fields of experts. International Journal of Computer Vision 82, 2. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Rudin, L. I., Osher, S., and Fatemi, E. 1992. Nonlinear total variation based noise removal algorithms. Physica D: Nonlinear Phenomena 60, 1. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Schuler, C. J., Hirsch, M., Harmeling, S., and Schölkopf, B. 2011. Non-stationary correction of optical aberrations. In ICCV. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Schuler, C. J., Burger, H. C., Harmeling, S., and Schölkopf, B. 2013. A machine learning approach for non-blind image deconvolution. In CVPR. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Shao, L., Yan, R., Li, X., and Liu, Y. 2013. From heuristic optimization to dictionary learning: A review and comprehensive comparison of image denoising algorithms. IEEE Transactions on Cybernetics, 99.Google ScholarGoogle Scholar
  43. Starck, J.-L., Murtagh, F., and Bijaoui, A. 1998. Image Processing and Data Analysis: The Multiscale Approach. Cambridge University Press, Cambridge. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Tico, M., and Pulli, K. 2009. Image enhancement method via blur and noisy image fusion. In ICIP. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Tico, M. 2008. Multiframe image denoising and stabilization. In European Signal Processing Conference.Google ScholarGoogle Scholar
  46. Tsai, Y.-T., Steinberger, M., Pająk, D., and Pulli, K. 2014. Fast ANN for high-quality collaborative filtering. In High-Performance Graphics.Google ScholarGoogle Scholar
  47. Venkatakrishnan, S. V., Bouman, C. A., and Wohlberg, B. 2013. Plug-and-play priors for model based reconstruction. In IEEE GlobalSIP.Google ScholarGoogle Scholar
  48. Venkataraman, K., Lelescu, D., Duparré, J., McMahon, A., Molina, G., Chatterjee, P., Mullis, R., and Nayar, S. 2013. Picam: an ultra-thin high performance monolithic camera array. ACM TOG 32, 6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Wallace, G. K. 1991. The JPEG still picture compression standard. Communications of the ACM 34, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Wilburn, B., Joshi, N., Vaish, V., Talvala, E.-V., Antunez, E., Barth, A., Adams, A., Horowitz, M., and Levoy, M. 2005. High performance imaging using large camera arrays. ACM TOG 24, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Wu, X., and Zhang, D. 2006. Improvement of color video demosaicking in temporal domain. IEEE TIP 15, 10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Xu, L., and Jia, J. 2010. Two-phase kernel estimation for robust motion deblurring. In ECCV. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. Zhang, L., Wu, X., Buades, A., and Li, X. 2011. Color demosaicking by local directional interpolation and nonlocal adaptive thresholding. Journal of Electronic Imaging 20, 2.Google ScholarGoogle Scholar
  54. Zoran, D., and Weiss, Y. 2011. From learning models of natural image patches to whole image restoration. In ICCV. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. FlexISP: a flexible camera image processing framework

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 33, Issue 6
      November 2014
      704 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/2661229
      Issue’s Table of Contents

      Copyright © 2014 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 19 November 2014
      Published in tog Volume 33, Issue 6

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader