skip to main content
10.1145/2666310.2666403acmconferencesArticle/Chapter ViewAbstractPublication PagesgisConference Proceedingsconference-collections
research-article

TAREEG: a MapReduce-based system for extracting spatial data from OpenStreetMap

Published:04 November 2014Publication History

ABSTRACT

Real spatial data, e.g., detailed road networks, rivers, buildings, parks, are not easily available for most of the world. This hinders the practicality of many research ideas that need a real spatial data for testing and experiments. Such data is often available for governmental use, or at major software companies, but it is prohibitively expensive to build or buy for academia or individual researchers. This paper presents TAREEG; a web-service that makes real spatial data, from anywhere in the world, available at the fingertips of every researcher or individual. TAREEG gets all its data by leveraging the richness of OpenStreetMap data set; the most comprehensive available spatial data of the world. Yet, it is still challenging to obtain OpenStreetMap data due to the size limitations, special data format, and the noisy nature of spatial data. TAREEG employs MapReduce-based techniques to make it efficient and easy to extract OpenStreetMap data in a standard form with minimal effort. Experimental results show that TAREEG is highly accurate and efficient.

References

  1. L. Alarabi, A. Eldawy, R. Alghamdi, and M. F. Mokbel. TAREEG: A MapReduce-Based Web Service for Extracting Spatial Data from OpenStreetMap (System Demonstration). In SIGMOD, pages 897--900, Snowbird, UT, June 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Apache pig. http://pig.apache.org/.Google ScholarGoogle Scholar
  3. Z. Chen, Y. Liy, R. C.-W. Wong, J. Xiong, G. Mai, and C. Long. Efficient algorithms for optimal location queries in road networks. In SIGMOD, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Z. Chen, H. T. Shen, X. Zhou, and J. X. Yu. Monitoring path nearest neighbor in road networks. In SIGMOD, pages 591--602, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. K. Deng, X. Zhou, and H. T. Shen. Multi-source skyline query processing in road networks. In ICDE, pages 796--805, 2007.Google ScholarGoogle ScholarCross RefCross Ref
  6. A. Eldawy and M. F. Mokbel. A Demonstration of SpatialHadoop: An Efficient MapReduce Framework for Spatial Data (System Demo). In VLDB, Riva del Garda, Italy, Aug. 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. A. Eldawy and M. F. Mokbel. Pigeon: A spatial mapreduce language. In ICDE, pages 1242--1245, 2014.Google ScholarGoogle ScholarCross RefCross Ref
  8. Geo fabrik. http://download.geofabrik.de/.Google ScholarGoogle Scholar
  9. A. Guttman. R-Trees: A Dynamic Index Structure for Spatial Searching. In SIGMOD, pages 47--57, 1984. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. M. Haklay. How good is Volunteered Geographical Information? A Comparative Study of OpenStreetMap and Ordnance Survey Datasets. Environment and Planning B: Planning and Design, 37(4):682--703, 2010.Google ScholarGoogle ScholarCross RefCross Ref
  11. L. Hu, Y. Jing, W.-S. Ku, and C. Shahabi. Enforcing k nearest neighbor query integrity on road networks. In SIGSPATIAL GIS, pages 422--425, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. C. S. Jensen, J. Kolárvr, T. B. Pedersen, and I. Timko. Nearest neighbor queries in road networks. In SIGSPATIAL GIS, pages 1--8, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Y. Jing, L. Hu, W.-S. Ku, and C. Shahabi. Authentication of k nearest neighbor query on road networks. TKDE, 26(6):1494--1506, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. C.-C. Lee, Y.-H. Wu, and A. L. P. Chen. Continuous evaluation of fastest path queries on road networks. In SSTD, pages 20--37, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. G. Li, Y. Li, J. Li, L. Shu, and F. Yang. Continuous reverse k nearest neighbor monitoring on moving objects in road networks. Information Systems, 35(8):860--883, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. S. Luo, Y. Luo, S. Zhou, G. Cong, and J. Guan. DISKs: a system for distributed spatial group keyword search on road networks. Proceedings of the International Conference on Very Large Data Bases, VLDB, 5(12):1966--1969, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. X. Ma, S. Shekhar, and H. Xiong. Multi-type nearest neighbor queries in road networks with time window constraints. In SIGSPATIAL GIS, pages 484--487, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. P. Mooney and P. Corcoran. Characteristics of heavily edited objects in openstreetmap. Future Internet, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  19. K. Mouratidis, M. L. Yiu, D. Papadias, and N. Mamoulis. Continuous nearest neighbor monitoring in road networks. In VLDB, pages 43--54, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Navteq. http://here.com/navteq-redirect/?lang=en-GB.Google ScholarGoogle Scholar
  21. P. Neis and A. Zipf. Analyzing the Contributor Activity of a Volunteered Geographic Information Project --- The Case of OpenStreetMap. ISPRS International Journal of Geo-Information, 1(2):146--165, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  22. J. Nievergelt, H. Hinterberger, and K. Sevcik. The Grid File: An Adaptable, Symmetric Multikey File Structure. TODS, 9(1):38--71, 1984. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Open geospatial consortium (ogc). http://www.opengeospatial.org/.Google ScholarGoogle Scholar
  24. Openstreetmap. http://www.openstreetmap.org/export.Google ScholarGoogle Scholar
  25. Osm benchmarks, June 2012. http://wiki.openstreetmap.org/wiki/Osm2pgsql/benchmarks.Google ScholarGoogle Scholar
  26. Osm tools, June 2012. http://wiki.openstreetmap.org/wiki/Osmosis.Google ScholarGoogle Scholar
  27. PostGIS, 2007. http://postgis.refractions.net/.Google ScholarGoogle Scholar
  28. M. N. Rice and V. J. Tsotras. Graph indexing of road networks for shortest path queries with label restrictions. PVLDB, 4(2):69--80, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. T. K. Sellis, N. Roussopoulos, and C. Faloutsos. The R+-Tree: A Dynamic Index for Multi-Dimensional Objects. In VLDB, pages 507--518, 1987. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. S. Shang, B. Yuan, K. Deng, K. Xie, and X. Zhou. Finding the Most Accessible Locations: Reverse Path Nearest Neighbor Query in Road Networks. In SIGSPATIAL GIS, pages 181--190, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. TAREEG. www.tareeg.org.Google ScholarGoogle Scholar
  32. J. R. Thomsen, M. L. Yiu, and C. S. Jensen. Effective caching of shortest paths for location-based services. In SIGMOD, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Y. Tian, K. C. K. Lee, and W.-C. Lee. Finding skyline paths in road networks. In SIGSPATIAL GIS, pages 444--447, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. TIGER files. http://www.census.gov/geo/www/tiger/.Google ScholarGoogle Scholar
  35. S. Vanhove and V. Fack. An effective heuristic for computing many shortest path alternatives in road networks. International Journal of Geographical Information Science, 26(6):1031--1050, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. L. Wu, X. Xiao, D. Deng, G. Cong, A. D. Zhu, and S. Zhou. Shortest path and distance queries on road networks: An experimental evaluation. PVLDB, 5(5):406--417, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. M. L. Yiu, N. Mamoulis, and D. Papadias. Aggregate nearest neighbor queries in road networks. TKDE, 17(6):820--833, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. W. Zeng and R. Church. Finding shortest paths on real road networks: The case for a*. International Journal of Geographical Information Science, 23(4):531--543, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. A. D. Zhu, H. Ma, X. Xiao, S. Luo, Y. Tang, and S. Zhou. Shortest path and distance queries on road networks: Towards bridging theory and practice. In SIGMOD, pages 857--868, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. L. Zhu, Y. Jing, W. Sun, D. Mao, and P. Liu. Voronoi-based aggregate nearest neighbor query processing in road networks. In SIGSPATIAL GIS, pages 518--521, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. TAREEG: a MapReduce-based system for extracting spatial data from OpenStreetMap

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        SIGSPATIAL '14: Proceedings of the 22nd ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems
        November 2014
        651 pages
        ISBN:9781450331319
        DOI:10.1145/2666310

        Copyright © 2014 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 4 November 2014

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

        Acceptance Rates

        SIGSPATIAL '14 Paper Acceptance Rate39of184submissions,21%Overall Acceptance Rate220of1,116submissions,20%

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader