skip to main content
10.1145/2688073.2688074acmconferencesArticle/Chapter ViewAbstractPublication PagesitcsConference Proceedingsconference-collections
research-article

Zero-Information Protocols and Unambiguity in Arthur-Merlin Communication

Published:11 January 2015Publication History

ABSTRACT

We study whether information complexity can be used to attack the long-standing open problem of proving lower bounds against Arthur{Merlin (AM) communication protocols. Our starting point is to show that|in contrast to plain randomized communication complexity|every boolean function admits an AM communication protocol where on each yes- input, the distribution of Merlin's proof leaks no information about the input and moreover, this proof is unique for each outcome of Arthur's randomness. We posit that these two properties of zero information leakage and unambiguity on yes-inputs are interesting in their own right and worthy of investigation as new avenues toward AM.

  • Zero-information protocols (ZAM). Our basic ZAM protocol uses exponential communication for some functions, and this raises the question of whether more efficient protocols exist. We prove that all functions in the classical space-bounded complexity classes NL and L have polynomial-communication ZAM protocols. We also prove that ZAM complexity is lower bounded by conondeterministic communication complexity.

  • Unambiguous protocols (UAM). Our most technically substantial result is a (n) lower bound on the UAM complexity of the NP-complete set-intersection function; the proof uses information complexity arguments in a new, indirect way and overcomes the \zero-information barrier" described above. We also prove that in general, UAM complexity is lower bounded by the classic discrepancy bound, and we give evidence that it is not generally lower bounded by the classic corruption bound.

References

  1. S. Aaronson and A. Wigderson. Algebrization: A new barrier in complexity theory. ACM Transactions on Computation Theory, 1(1), 2009. doi:10.1145/1490270.1490272. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. A. Ada, A. Chattopadhyay, S. Cook, L. Fontes, M. Kouck y, and T. Pitassi. The hardness of being private. ACM Transactions on Computation Theory, 6(1), 2014. doi:10.1145/2567671. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. B. Applebaum, Y. Ishai, and E. Kushilevitz. Cryptography in NC 0. SIAM Journal on Computing, 36(4):845--888, 2006. doi:10.1137/S0097539705446950. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. L. Babai, P. Frankl, and J. Simon. Complexity classes in communication complexity theory. In Proceedings of the 27th Symposium on Foundations of Computer Science (FOCS), pages 337--347. IEEE, 1986. doi:10.1109/SFCS.1986.15. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. L. Babai and S. Moran. Arthur--Merlin games: A randomized proof system, and a hierarchy of complexity classes. Journal of Computer and System Sciences, 36(2):254--276, 1988. doi:10.1016/0022-0000(88)90028--1. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Z. Bar-Yossef, T. Jayram, R. Kumar, and D. Sivakumar. An information statistics approach to data stream and communication complexity. Journal of Computer and System Sciences, 68(4):702--732, 2004. doi:10.1016/j.jcss.2003.11.006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. R. Beigel, N. Reingold, and D. Spielman. PP is closed under intersection. Journal of Computer and System Sciences, 50(2):191--202, 1995. doi:10.1006/jcss.1995.1017. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. E. Böhler, C. Gla er, and D. Meister. Error-bounded probabilistic computations between MA and AM. Journal of Computer and System Sciences, 72(6):1043--1076, 2006. doi:10.1016/j.jcss.2006.05.001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. M. Braverman, F. Ellen, R. Oshman, T. Pitassi, and V. Vaikuntanathan. A tight bound for set disjointness in the message-passing model. In Proceedings of the 54th Symposium on Foundations of Computer Science (FOCS), pages 668--677. IEEE, 2013. doi:10.1109/FOCS.2013.77. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. M. Braverman, A. Garg, D. Pankratov, and O. Weinstein. From information to exact communication. In Proceedings of the 45th Symposium on Theory of Computing (STOC), pages 151--160. ACM, 2013. doi:10.1145/2488608.2488628. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. M. Braverman and A. Moitra. An information complexity approach to extended formulations. In Proceedings of the 45th Symposium on Theory of Computing (STOC), pages 161--170. ACM, 2013. doi:10.1145/2488608.2488629. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. A. Chakrabarti, G. Cormode, N. Goyal, and J. Thaler. Annotations for sparse data streams. In Proceedings of the 25th Symposium on Discrete Algorithms (SODA), pages 687--706. ACM-SIAM, 2014. doi:10.1137/1.9781611973402.52. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. A. Chakrabarti, G. Cormode, and A. McGregor. Annotations in data streams. In Proceedings of the 36th International Colloquium on Automata, Languages, and Programming (ICALP), pages 222--234. Springer, 2009. doi:10.1007/978--3--642-02927--1--20. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. A. Chakrabarti, G. Cormode, A. McGregor, J. Thaler, and S. Venkatasubramanian. On interactivity in Arthur--Merlin communication and stream computation. Technical Report TR13--180, Electronic Colloquium on Computational Complexity (ECCC), 2013. URL: http://eccc.hpi-web.de/report/2013/180/.Google ScholarGoogle Scholar
  15. A. Chakrabarti, S. Khot, and X. Sun. Near-optimal lower bounds on the multi-party communication complexity of set disjointness. In Proceedings of the 18th Conference on Computational Complexity (CCC), pages 107--117. IEEE, 2003. doi:10.1109/CCC.2003.1214414.Google ScholarGoogle ScholarCross RefCross Ref
  16. A. Chakrabarti, Y. Shi, A. Wirth, and A. Yao. Informational complexity and the direct sum problem for simultaneous message complexity. In Proceedings of the 42nd Symposium on Foundations of Computer Science (FOCS), pages 270--278. IEEE, 2001. doi:10.1109/SFCS.2001.959901. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. C. Damm. Problems complete for L. Information Processing Letters, 36(5):247--250, 1990. doi:10.1016/0020-0190(90)90150-V. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. A. Dasgupta, R. Kumar, and D. Sivakumar. Sparse and lopsided set disjointness via information theory. In Proceedings of the 16th International Workshop on Randomization and Computation (RANDOM), pages 517--528. Springer, 2012. doi:10.1007/978--3--642--32512-0--44.Google ScholarGoogle ScholarCross RefCross Ref
  19. U. Feige, J. Kilian, and M. Naor. A minimal model for secure computation. In Proceedings of the 26th Symposium on Theory of Computing (STOC), pages 554--563. ACM, 1994. doi:10.1145/195058.195408. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. A. Gál and A. Wigderson. Boolean complexity classes vs. their arithmetic analogs. Random Structures & Algorithms, 9(1--2):99--111, 1996. doi:10.1002/(SICI)10982418(199608/09)9:1/299::AID-RSA7 3.0.CO;2--6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. D. Gavinsky and A. Sherstov. A separation of NP and coNP in multiparty communication complexity. Theory of Computing, 6(1):227--245, 2010. doi:10.4086/toc.2010.v006a010.Google ScholarGoogle ScholarCross RefCross Ref
  22. M. Göös, S. Lovett, R. Meka, T. Watson, and D. Zuckerman. Rectangles are nonnegative juntas. Technical Report TR14--147, Electronic Colloquium on Computational Complexity (ECCC), 2014. URL: http://eccc.hpi-web.de/report/2014/147/.Google ScholarGoogle Scholar
  23. M. Göös, T. Pitassi, and T. Watson. Zero-information protocols and unambiguity in Arthur--Merlin communication. Technical Report TR14-078, Electronic Colloquium on Computational Complexity (ECCC), 2014. Full version. URL: http://eccc.hpi-web.de/report/2014/078/.Google ScholarGoogle Scholar
  24. M. Göös and T. Watson. Communication complexity of set-disjointness for all probabilities. In Proceedings of the 18th International Workshop on Randomization and Computation (RANDOM), pages 721--736. Schloss Dagstuhl, 2014. doi:10.4230/LIPIcs.APPROX-RANDOM.2014.721.Google ScholarGoogle Scholar
  25. A. Gronemeier. Asymptotically optimal lower bounds on the NIH-multi-party information complexity of the AND-function and disjointness. In Proceedings of the 26th International Symposium on Theoretical Aspects of Computer Science (STACS), pages 505--516. Schloss Dagstuhl, 2009. doi:10.4230/LIPIcs.STACS.2009.1846.Google ScholarGoogle Scholar
  26. T. Gur and R. Raz. Arthur--Merlin streaming complexity. In Proceedings of the 40th International Colloquium on Automata, Languages, and Programming (ICALP), pages 528--539. Springer, 2013. doi:10.1007/978--3--642--39206--1--45. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. T. Gur and R. Rothblum. Non-interactive proofs of proximity. Technical Report TR13-078, Electronic Colloquium on Computational Complexity (ECCC), 2013. URL: http://eccc.hpi-web.de/report/2013/078/.Google ScholarGoogle Scholar
  28. R. Impagliazzo, V. Kabanets, and A. Kolokolova. An axiomatic approach to algebrization. In Proceedings of the 41st Symposium on Theory of Computing (STOC), pages 695--704. ACM, 2009. doi:10.1145/1536414.1536509. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. R. Impagliazzo and R. Williams. Communication complexity with synchronized clocks. In Proceedings of the 25th Conference on Computational Complexity (CCC), pages 259--269. IEEE, 2010. doi:10.1109/CCC.2010.32. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Y. Ishai and E. Kushilevitz. Perfect constant-round secure computation via perfect randomizing polynomials. In Proceedings of the 29th International Colloquium on Automata, Languages, and Programming (ICALP), pages 244--256. Springer, 2002. doi:10.1007/3--540--45465--9--22. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. R. Jain and H. Klauck. The partition bound for classical communication complexity and query complexity. In Proceedings of the 25th Conference on Computational Complexity (CCC), pages 247--258. IEEE, 2010. doi:10.1109/CCC.2010.31. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. T. Jayram. Hellinger strikes back: A note on the multi-party information complexity of AND. In Proceedings of the 13th International Workshop on Randomization and Computation (RANDOM), pages 562--573. Springer, 2009. doi:10.1007/978--3--642-03685--9--42. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. T. Jayram, R. Kumar, and D. Sivakumar. Two applications of information complexity. In Proceedings of the 35th Symposium on Theory of Computing (STOC), pages 673--682. ACM, 2003. doi:10.1145/780542.780640. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. S. Jukna. On graph complexity. Combinatorics, Probability, & Computing, 15(6):855--876, 2006. doi:10.1017/S0963548306007620. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. S. Jukna. Boolean Function Complexity: Advances and Frontiers, volume 27 of Algorithms and Combinatorics. Springer, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. H. Klauck. Rectangle size bounds and threshold covers in communication complexity. In Proceedings of the 18th Conference on Computational Complexity (CCC), pages 118--134. IEEE, 2003. doi:10.1109/CCC.2003.1214415.Google ScholarGoogle ScholarCross RefCross Ref
  37. H. Klauck. Lower bounds for quantum communication complexity. SIAM Journal on Computing, 37(1):20--46, 2007. doi:10.1137/S0097539702405620. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. H. Klauck. A strong direct product theorem for disjointness. In Proceedings of the 42nd Symposium on Theory of Computing (STOC), pages 77--86. ACM, 2010. doi:10.1145/1806689.1806702. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. H. Klauck. On Arthur Merlin games in communication complexity. In Proceedings of the 26th Conference on Computational Complexity (CCC), pages 189--199. IEEE, 2011. doi:10.1109/CCC.2011.33. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. H. Klauck and S. Podder. Two results about quantum messages. In Proceedings of the 39th International Symposium on Mathematical Foundations of Computer Science (MFCS), pages 445--456. Springer, 2014. doi:10.1007/978--3--662--44465--8--38.Google ScholarGoogle ScholarCross RefCross Ref
  41. H. Klauck and V. Prakash. Streaming computations with a loquacious prover. In Proceedings of the 4th Innovations in Theoretical Computer Science Conference (ITCS), pages 305--320. ACM, 2013. doi:10.1145/2422436.2422471. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. H. Klauck and V. Prakash. An improved interactive streaming algorithm for the distinct elements problem. In Proceedings of the 41st International Colloquium on Automata, Languages, and Programming (ICALP), pages 919--930. Springer, 2014. doi:10.1007/978--3--662--43948--7--76Google ScholarGoogle ScholarCross RefCross Ref
  43. E. Kushilevitz. Privacy and communication complexity. SIAM Journal on Discrete Mathematics, 5(2):273--284, 1992. doi:10.1137/0405021. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. E. Kushilevitz and N. Nisan. Communication Complexity. Cambridge University Press, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. N. Linial and A. Shraibman. Learning complexity vs communication complexity. Combinatorics, Probability, & Computing, 18(1--2):227--245, 2009. doi:10.1017/S0963548308009656. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. S. Lokam. Spectral methods for matrix rigidity with applications to size-depth trade-offs and communication complexity. Journal of Computer and System Sciences, 63(3):449--473, 2001. doi:10.1006/jcss.2001.1786.Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. S. Lokam. Complexity lower bounds using linear algebra. Foundations and Trends in Theoretical Computer Science, 4(1--2):1--155, 2009. doi:10.1561/0400000011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. P. Papakonstantinou, D. Scheder, and H. Song. Overlays and limited memory communication. In Proceedings of the 29th Conference on Computational Complexity (CCC), pages 298--308. IEEE, 2014. doi:10.1109/CCC.2014.37. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. P. Pudl ak, V. Rödl, and P. Savick y. Graph complexity. Acta Informatica, 25(5):515--535, 1988. doi:10.1007/BF00279952. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. R. Raz and A. Shpilka. On the power of quantum proofs. In Proceedings of the 19th Conference on Computational Complexity (CCC), pages 260--274. IEEE, 2004. doi:10.1109/CCC.2004.1313849. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. A. Razborov. On rigid matrices. Technical report, Steklov Mathematical Institute, 1989. In Russian.Google ScholarGoogle Scholar
  52. A. Razborov. On the distributional complexity of disjointness. Theoretical Computer Science, 106(2):385--390, 1992. doi:10.1016/0304--3975(92)90260-M. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. K. Reinhardt and E. Allender. Making nondeterminism unambiguous. SIAM Journal on Computing, 29(4):1118--1131, 2000. doi:10.1137/S0097539798339041. Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. M. Santha. Relativized Arthur--Merlin versus Merlin--Arthur games. Information and Computation, 80(1):44--49, 1989. doi:10.1016/0890--5401(89)90022--9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. U. Schöning. Probabilistic complexity classes and lowness. Journal of Computer and System Sciences, 39(1):84--100, 1989. doi:10.1016/0022-0000(89)90020--2. Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. L. Valiant. Graph-theoretic arguments in low-level complexity. In Proceedings of the 6th Symposium on Mathematical Foundations of Computer Science (MFCS), pages 162--176. Springer, 1977. doi:10.1007/3--540-08353--7--135.Google ScholarGoogle ScholarCross RefCross Ref
  57. L. Valiant. Completeness classes in algebra. In Proceedings of the 11th Symposium on Theory of Computing (STOC), pages 249--261. ACM, 1979. doi:10.1145/800135.804419. Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. H. Wunderlich. A note on a problem in communication complexity. Technical report, arXiv, 2012. arXiv:1205.0903.Google ScholarGoogle Scholar
  59. H. Wunderlich. On a theorem of Razborov. Computational Complexity, 21(3):431--477, 2012. doi:10.1007/s00037-011-0021--5. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Zero-Information Protocols and Unambiguity in Arthur-Merlin Communication

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      ITCS '15: Proceedings of the 2015 Conference on Innovations in Theoretical Computer Science
      January 2015
      404 pages
      ISBN:9781450333337
      DOI:10.1145/2688073

      Copyright © 2015 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 11 January 2015

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      ITCS '15 Paper Acceptance Rate45of159submissions,28%Overall Acceptance Rate172of513submissions,34%

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader