skip to main content
10.1145/2702123.2702389acmconferencesArticle/Chapter ViewAbstractPublication PageschiConference Proceedingsconference-collections
research-article

Substitutional Reality: Using the Physical Environment to Design Virtual Reality Experiences

Published:18 April 2015Publication History

ABSTRACT

Experiencing Virtual Reality in domestic and other uncontrolled settings is challenging due to the presence of physical objects and furniture that are not usually defined in the Virtual Environment. To address this challenge, we explore the concept of Substitutional Reality in the context of Virtual Reality: a class of Virtual Environments where every physical object surrounding a user is paired, with some degree of discrepancy, to a virtual counterpart. We present a model of potential substitutions and validate it in two user studies. In the first study we investigated factors that affect participants' suspension of disbelief and ease of use. We systematically altered the virtual representation of a physical object and recorded responses from 20 participants. The second study investigated users' levels of engagement as the physical proxy for a virtual object varied. From the results, we derive a set of guidelines for the design of future Substitutional Reality experiences.

Skip Supplemental Material Section

Supplemental Material

pn1357-file3.mp4

mp4

80.9 MB

p3307-simeone.mp4

mp4

188.3 MB

References

  1. Barbagli, F., Salisbury, K., Ho, C., Spence, C., and Tan, H. Z. Haptic discrimination of force direction and the influence of visual information. ACM TAP 3, 2 (Apr. 2006), 125--135. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Carlin, A. S., Hoffman, H. G., and Weghorst, S. Virtual reality and tactile augmentation in the treatment of spider phobia: a case report. Behav. Res. Ther. 35, 2 (1997), 153--158.Google ScholarGoogle ScholarCross RefCross Ref
  3. Cosco, F., Garre, C., Bruno, F., Muzzupappa, M., and Otaduy, M. A. Visuo-haptic mixed reality with unobstructed tool-hand integration. IEEE TVCG 19, 1 (2013), 159--172. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. e Silva, A. d. S., and Delacruz, G. C. Hybrid reality games reframed potential uses in educational contexts. SAGE GAC 1, 3 (2006), 231--251.Google ScholarGoogle Scholar
  5. Gibson, J. J. The theory of affordances. Perceiving, Acting and Knowing (1977).Google ScholarGoogle Scholar
  6. Hinckley, K., Pausch, R., Goble, J. C., and Kassell, N. F. Passive real-world interface props for neurosurgical visualization. In Proc. CHI '94, 452--458. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Hoffmann, H. Physically touching virtual objects using tactile augmentation enhances the realism of virtual environments. In Proc. VR '98, 59--63. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Insko, B. E. Passive haptics significantly enhances virtual environments. PhD thesis, UNC, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Izadi, S., Kim, D., Hilliges, O., Molyneaux, D., Newcombe, R., Kohli, P., Shotton, J., Hodges, S., Freeman, D., Davison, A., et al. Kinectfusion: real-time 3d reconstruction and interaction using a moving depth camera. In Proc. UIST '11, 559--568. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Kanade, T., Rander, P., and Narayanan, P. Virtualized reality: Constructing virtual worlds from real scenes. IEEE Multimedia 4, 1 (1997), 34--47. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Knoerlein, B., Székely, G., and Harders, M. Visuo-haptic collaborative augmented reality ping-pong. In Proc. ACE '07, 91--94. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Kohli, L., Whitton, M. C., and Brooks, F. Redirected touching: The effect of warping space on task performance. In Proc. 3DUI '12, 105--112.Google ScholarGoogle Scholar
  13. Kotranza, A., and Lok, B. Virtual human+ tangible interface= mixed reality human an initial exploration with a virtual breast exam patient. In Proc. VR '08, 99--106.Google ScholarGoogle Scholar
  14. Kushner, D. Virtual reality's moment. IEEE Spectrum 51, 1 (Jan. 2014), 34--37.Google ScholarGoogle Scholar
  15. Kwon, E., Kim, G. J., and Lee, S. Effects of sizes and shapes of props in tangible augmented reality. In Proc. ISMAR '09, 201--202. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Matsuoka, Y., Allin, S. J., and Klatzky, R. L. The tolerance for visual feedback distortions in a virtual environment. Physiol. Behav. 77, 4 (2002), 651--655.Google ScholarGoogle ScholarCross RefCross Ref
  17. McNeely, W. A. Robotic graphics: a new approach to force feedback for virtual reality. In Proc. VR '93, 336--341. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Milgram, P., and Kishino, F. A taxonomy of mixed reality visual displays. IEICE Trans. Inf.& Syst. 77, 12 (1994), 1321--1329.Google ScholarGoogle Scholar
  19. Milgram, P., Takemura, H., Utsumi, A., and Kishino, F. Augmented reality: A class of displays on the reality-virtuality continuum. In Proc. SPIE 2351 (1995), 282--292.Google ScholarGoogle Scholar
  20. Reda, K., Febretti, A., Knoll, A., Aurisano, J., Leigh, J., Johnson, A. E., Papka, M. E., and Hereld, M. Visualizing large, heterogeneous data in hybrid-reality environments. IEEE CGA 33, 4 (2013), 38--48. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Robertson, G., Czerwinski, M., and Van Dantzich, M. Immersion in desktop virtual reality. In Proc. UIST '97, 11--19. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Slater, M., Usoh, M., and Steed, A. Taking steps: The influence of a walking technique on presence in virtual reality. ACM TOCHI 2, 3 (Sept. 1995), 201--219. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Steinicke, F., Bruder, G., Kohli, L., Jerald, J., and Hinrichs, K. Taxonomy and implementation of redirection techniques for ubiquitous passive haptic feedback. In Cyberworlds '08, 217--223. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Suzuki, K., Wakisaka, S., and Fujii, N. Substitutional reality system: a novel experimental platform for experiencing alternative reality. Sci. Rep. 2 (2012).Google ScholarGoogle Scholar
  25. Tachi, S., Maeda, T., Hirata, R., and Hoshino, H. A construction method of virtual haptic space. In Proc. ICAT '94, 131--138.Google ScholarGoogle Scholar
  26. Usoh, M., Arthur, K., Whitton, M. C., Bastos, R., Steed, A., Slater, M., and Brooks Jr, F. P. Walking > walking-in-place > flying, in virtual environments. In Proc. SIGGRAPH '99, 359--364. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Williams, B., Narasimham, G., Rump, B., McNamara, T. P., Carr, T. H., Rieser, J., and Bodenheimer, B. Exploring large virtual environments with an hmd when physical space is limited. In Proc. APGV '07, 41--48. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Substitutional Reality: Using the Physical Environment to Design Virtual Reality Experiences

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      CHI '15: Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems
      April 2015
      4290 pages
      ISBN:9781450331456
      DOI:10.1145/2702123

      Copyright © 2015 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 18 April 2015

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      CHI '15 Paper Acceptance Rate486of2,120submissions,23%Overall Acceptance Rate6,199of26,314submissions,24%

      Upcoming Conference

      CHI '24
      CHI Conference on Human Factors in Computing Systems
      May 11 - 16, 2024
      Honolulu , HI , USA

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader