skip to main content
research-article

An Advanced Visibility Restoration Algorithm for Single Hazy Images

Authors Info & Claims
Published:02 June 2015Publication History
Skip Abstract Section

Abstract

Haze removal is the process by which horizontal obscuration is eliminated from hazy images captured during inclement weather. Images captured in natural environments with varied weather conditions frequently exhibit localized light sources or color-shift effects. The occurrence of these effects presents a difficult challenge for hazy image restoration, with which many traditional restoration methods cannot adequately contend. In this article, we present a new image haze removal approach based on Fisher's linear discriminant-based dual dark channel prior scheme in order to solve the problems associated with the presence of localized light sources and color shifts, and thereby achieve effective restoration. Experimental restoration results via qualitative and quantitative evaluations show that our proposed approach can provide higher haze-removal efficacy for images captured in varied weather conditions than can the other state-of-the-art approaches.

References

  1. P. N. Belhumeur, J. P. Hespanha, and D. Kriegman. 1997. Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection. IEEE Trans. Pattern Anal. Mach. Intell. 19, 7, 711--720. DOI:http://dx.doi.org/10.1109/34.598228 Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Bo-Hao Chen and Shih-Chia Huang. 2013. Improved visibility of single hazy images captured in inclement weather conditions. In Proceedings of the IEEE International Symposium on Multimedia. 267--270. DOI:http://dx.doi.org/10.1109/ISM.2013.51 Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Raanan Fattal. 2008. Single image dehazing. ACM Trans. Graph. 27, 3, Article 72, DOI:http://dx.doi. org/10.1145/1360612.1360671 Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Nicolas Hautire, Jean Philippe Tarel, Didier Aubert, and Ric Dumont. 2011. Blind contrast enhancement assessment by gradient ratioing at visible edges. Image Analysis & Stereology 27, 2. http://www.ias-iss.org/ojs/IAS/article/view/834Google ScholarGoogle Scholar
  5. Kaiming He, Jian Sun, and Xiaoou Tang. 2011. Single Image Haze Removal Using Dark Channel Prior. IEEE Trans. Pattern Anal. Mach. Intell. 33, 12, 2341--2353. DOI:http://dx.doi.org/10.1109/TPAMI.2010.168 Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. M. Anwar Hossain, Pradeep K. Atrey, and Abdulmotaleb El Saddik. 2011. Modeling and assessing quality of information in multisensor multimedia monitoring systems. ACM Trans. Multimedia Comput. Commun. Appl. 7, 1, Article 3, DOI:http://dx.doi.org/10.1145/1870121.1870124 Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Shih-Chia Huang, Bo-Hao Chen, and Yi-Jui Cheng. 2014a. An efficient visibility enhancement algorithm for road scenes captured by intelligent transportation systems. IEEE Trans. Intell. Transp. Syst. 15, 5, 2321--2332. DOI:http://dx.doi.org/10.1109/TITS.2014.2314696Google ScholarGoogle ScholarCross RefCross Ref
  8. Shih-Chia Huang, Bo-Hao Chen, and Wei-Jheng Wang. 2014b. Visibility restoration of single hazy images captured in real-world weather conditions. IEEE Trans. Circuits Syst. Video Technol. 24, 10, 1814--1824. DOI:http://dx.doi.org/10.1109/TCSVT.2014.2317854Google ScholarGoogle ScholarCross RefCross Ref
  9. Anya Hurlbert. 1986. Formal connections between lightness algorithms. J. Opt. Soc. Amer. A 3, 10, 1684--1693. DOI:http://dx.doi.org/10.1364/JOSAA.3.001684Google ScholarGoogle ScholarCross RefCross Ref
  10. Wenbo Jin, Zengyuan Mi, Xiaotian Wu, Yue Huang, and Xinghao Ding. 2012. Single image de-haze based on a new dark channel estimation method. In Proceedings of the IEEE International Conference on Computer Science and Automation Engineering. Vol. 2, 791--795. DOI:http://dx.doi.org/10.1109/CSAE.2012.6272884Google ScholarGoogle ScholarCross RefCross Ref
  11. Johannes Kopf, Boris Neubert, Billy Chen, Michael Cohen, Daniel Cohen-Or, Oliver Deussen, Matt Uyttendaele, and Dani Lischinski. 2008. Deep photo: Model-based photograph enhancement and viewing. ACM Trans. Graph. 27, 5, Article 116, DOI:http://dx.doi.org/10.1145/1409060.1409069 Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. E. Y. Lam. 2005. Combining gray world and retinex theory for automatic white balance in digital photography. In Proceedings of the 9th International Symposium on Consumer Electronics. 134--139. DOI:http://dx.doi.org/10.1109/ISCE.2005.1502356Google ScholarGoogle ScholarCross RefCross Ref
  13. Edwin H. Land. 1986. An alternative technique for the computation of the designator in the retinex theory of color vision. Proc Natl Acad Sci USA.Google ScholarGoogle ScholarCross RefCross Ref
  14. A. Levin, D. Lischinski, and Y. Weiss. 2008. A closed-form solution to natural image matting. IEEE Trans. Pattern Anal. Mach. Intell. 30, 2, 228--242. DOI:http://dx.doi.org/10.1109/TPAMI.2007.1177 Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Xiaotao Liu, Mark Corner, and Prashant Shenoy. 2009. SEVA: Sensor-enhanced video annotation. ACM Trans. Multimedia Comput. Commun. Appl. 5, 3, Article 24, DOI:http://dx.doi.org/10.1145/1556134.1556141 Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Tao Mei, Lin-Xie Tang, Jinhui Tang, and Xian-Sheng Hua. 2013. Near-lossless semantic video summarization and its applications to video analysis. ACM Trans. Multimedia Comput. Commun. Appl. 9, 3, Article 16, DOI:http://dx.doi.org/10.1145/2487268.2487269 Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. S. G. Narasimhan and S. K. Nayar. 2003a. Contrast restoration of weather degraded images. IEEE Trans. Pattern Anal. Mach. Intell. 25, 6, 713--724. DOI:http://dx.doi.org/10.1109/TPAMI.2003.1201821 Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Srinivasa G. Narasimhan and Shree Nayar. 2003b. Interactive deweathering of an image using physical models. In Proceedings of the IEEE Workshop on Color and Photometric Methods in Computer Vision in Conjunction with ICCV.Google ScholarGoogle Scholar
  19. Ko Nishino, Louis Kratz, and Stephen Lombardi. 2012. Bayesian defogging. Int. J. Comput. Vision 98, 3, 263--278. DOI:http://dx.doi.org/10.1007/s11263-011-0508-1 Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. J. P. Oakley and B. L. Satherley. 1998. Improving image quality in poor visibility conditions using a physical model for contrast degradation. IEEE Trans. Image Process. 7, 2, 167--179. DOI:http://dx.doi. org/10.1109/83.660994 Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. S. Shwartz, E. Namer, and Y. Y. Schechner. 2006. Blind haze separation. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Vol. 2, 1984--1991. DOI:http://dx.doi.org/10.1109/CVPR.2006.71 Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Lauro Snidaro, Ingrid Visentini, and Gian Luca Foresti. 2012. Fusing multiple video sensors for surveillance. ACM Trans. Multimedia Comput. Commun. Appl. 8, 1, Article 7, DOI:http://dx.doi.org/10.1145/2071396.2071403 Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Shen-Chuan Tai, Tzu-Wen Liao, Yi-Ying Chang, and Chih Pei Yeh. 2012. Automatic White Balance algorithm through the average equalization and threshold. In Proceedings of the 8th International Conference on Information Science and Digital Content Technology. Vol. 3, 571--576.Google ScholarGoogle Scholar
  24. R. T. Tan. 2008. Visibility in bad weather from a single image. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 1--8. DOI:http://dx.doi.org/10.1109/CVPR.2008.4587643Google ScholarGoogle ScholarCross RefCross Ref
  25. J. P Tarel and N. Hautiere. 2009. Fast visibility restoration from a single color or gray level image. In Proceedings of the IEEE 12th International Conference on Computer Vision. 2201--2208. DOI:http://dx.doi.org/10.1109/ICCV.2009.5459251Google ScholarGoogle Scholar
  26. Michael A. Webster. 1996. Human colour perception and its adaptation. Network: Computation in Neural Systems 7, 4, 587--634. DOI:http://dx.doi.org/10.1088/0954-898X_7_4_002Google ScholarGoogle ScholarCross RefCross Ref
  27. Gerhard West and Michael H. Brill. 1982. Necessary and sufficient conditions for Von Kries chromatic adaptation to give color constancy. J. Math. Biology 15, 2, 249--258. DOI:http://dx.doi.org/10.1007/BF00275077Google ScholarGoogle ScholarCross RefCross Ref
  28. Junwen Wu and Mohan M. Trivedi. 2010. An eye localization, tracking and blink pattern recognition system: Algorithm and evaluation. ACM Trans. Multimedia Comput. Commun. Appl. 6, 2, Article 8, 23 pages. DOI:http://dx.doi.org/10.1145/1671962.1671964 Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Bin Xie, Fan Guo, and Zixing Cai. 2010. Improved single image dehazing using dark channel prior and multi-scale Retinex. In Proceedings of the International Conference on Intelligent System Design and Engineering Application, Vol. 1. 848--851. DOI:http://dx.doi.org/10.1109/ISDEA.2010.141 Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Haoran Xu, Jianming Guo, Qing Liu, and Lingli Ye. 2012. Fast image dehazing using improved dark channel prior. In Proceedings of the International Conference on Information Science and Technology. 663--667. DOI:http://dx.doi.org/10.1109/ICIST.2012.6221729Google ScholarGoogle ScholarCross RefCross Ref
  31. Jing Yu and Qingmin Liao. 2011. Fast single image fog removal using edge-preserving smoothing. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing. 1245--1248. DOI:http://dx.doi.org/10.1109/ICASSP.2011.5946636Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. An Advanced Visibility Restoration Algorithm for Single Hazy Images

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Multimedia Computing, Communications, and Applications
          ACM Transactions on Multimedia Computing, Communications, and Applications  Volume 11, Issue 4
          April 2015
          231 pages
          ISSN:1551-6857
          EISSN:1551-6865
          DOI:10.1145/2788342
          Issue’s Table of Contents

          Copyright © 2015 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 2 June 2015
          • Revised: 1 January 2015
          • Accepted: 1 January 2015
          • Received: 1 May 2014
          Published in tomm Volume 11, Issue 4

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article
          • Research
          • Refereed

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader