skip to main content
10.1145/2736277.2741675acmotherconferencesArticle/Chapter ViewAbstractPublication PageswwwConference Proceedingsconference-collections
research-article

Semantic Annotation of Mobility Data using Social Media

Published:18 May 2015Publication History

ABSTRACT

Recent developments in sensors, GPS and smart phones have provided us with a large amount of mobility data. At the same time, large-scale crowd-generated social media data, such as geo-tagged tweets, provide rich semantic information about locations and events. Combining the mobility data and surrounding social media data enables us to semantically understand why a person travels to a location at a particular time (e.g., attending a local event or visiting a point of interest). Previous research on mobility data mining has been mainly focused on mining patterns using only the mobility data. In this paper, we study the problem of using social media to annotate mobility data. As social media data is often noisy, the key research problem lies in using the right model to retrieve only the relevant words with respect to a mobility record. We propose frequency-based method, Gaussian mixture model, and kernel density estimation (KDE) to tackle this problem. We show that KDE is the most suitable model as it captures the locality of word distribution very well. We test our proposal using the real dataset collected from Twitter and demonstrate the effectiveness of our techniques via both interesting case studies and a comprehensive evaluation.

References

  1. L. O. Alvares, V. Bogorny, B. Kuijpers, J. A. F. de Macedo, B. Moelans, and A. Vaisman. A model for enriching trajectories with semantic geographical information. In Proc. ACM GIS, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. N. Andrienko and G. Andrienko. Designing visual analytics methods for massive collections of movementdata. Cartographica: The International Journal for Geographic Information and Geovisualization, 2007.Google ScholarGoogle Scholar
  3. D. Ashbrook and T. Starner. Using gps to learn significant locations and predict movement across multiple users. UbiComp, 2003.Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. L. Backstrom, J. Kleinberg, R. Kumar, and J. Novak. Spatial variation in search engine queries. In Proc. WWW, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. J. Bithell. An application of density estimation to geographical epidemiology. Statistics in medicine, 9(6):691--701, 1990.Google ScholarGoogle ScholarCross RefCross Ref
  6. L. Breiman, W. Meisel, and E. Purcell. Variable kernel estimates of multivariate densities. Technometrics, 1977.Google ScholarGoogle ScholarCross RefCross Ref
  7. X. Cao, G. Cong, and C. S. Jensen. Mining significant semantic locations from gps data. Proc. VLDB, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. D. Chakrabarti and K. Punera. Event summarization using tweets. ICWSM, 11:66--73, 2011.Google ScholarGoogle Scholar
  9. Z. Cheng, J. Caverlee, and K. Lee. You are where you tweet: a content-based approach to geo-locating twitter users. In Proc. ACM CIKM, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. E. Cho, S. A. Myers, and J. Leskovec. Friendship and mobility: user movement in location-based social networks. In Proc. ACM KDD, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. K. Dehnad. Density estimation for statistics and data analysis. Technometrics, 29(4):495--495, 1987.Google ScholarGoogle ScholarCross RefCross Ref
  12. N. Donthu and R. T. Rust. Note-estimating geographic customer densities using kernel density estimation. Marketing Science, 8(2):191--203, 1989.Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. N. Eagle, A. Pentland, and D. Lazer. Inferring friendship network structure by using mobile phone data. In Proc. PNAS, 2009.Google ScholarGoogle ScholarCross RefCross Ref
  14. G. Erkan and D. R. Radev. Lexrank: graph-based lexical centrality as salience in text summarization. Journal of Artificial Intelligence Research, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. B. Guc, M. May, Y. Saygin, and C. Körner. Semantic annotation of gps trajectories. In Proc AGILE, 2008.Google ScholarGoogle Scholar
  16. S. Hasan, X. Zhan, and S. V. Ukkusuri. Understanding urban human activity and mobility patterns using large-scale location-based data from online social media. In UrbComp, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. D. Inouye and J. K. Kalita. Comparing twitter summarization algorithms for multiple post summaries. In PASSAT and SocialCom. IEEE, 2011.Google ScholarGoogle Scholar
  18. Z. Li, B. Ding, J. Han, R. Kays, and P. Nye. Mining periodic behaviors for moving objects. In Proc. ACM KDD, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. L. Liao. Location-based activity recognition. PhD thesis, University of Washington, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. M. Lichman and P. Smyth. Modeling human location data with mixtures of kernel densities. In Proc. SIGKDD. ACM, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. N. Mamoulis, H. Cao, G. Kollios, M. Hadjieleftheriou, Y. Tao, and D. Cheung. Mining, indexing, and querying historical spatiotemporal data. In Proc. ACM KDD, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. M. Mathioudakis, N. Bansal, and N. Koudas. Identifying, attributing and describing spatial bursts. In Proc. VLDB, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. R. Mihalcea and P. Tarau. Textrank: Bringing order into texts. ACL, 2004.Google ScholarGoogle Scholar
  24. A. T. Palma, V. Bogorny, B. Kuijpers, and L. O. Alvares. A clustering-based approach for discovering interesting places in trajectories. In Proc. SAC, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. D. Radev, T. Allison, S. Blair-Goldensohn, J. Blitzer, A. Celebi, S. Dimitrov, E. Drabek, A. Hakim, W. Lam, D. Liu, et al. Mead-a platform for multidocument multilingual text summarization. 2004.Google ScholarGoogle Scholar
  26. B. Sharifi, M.-A. Hutton, and J. Kalita. Summarizing microblogs automatically. In Proc NAACL, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. S. Spaccapietra, C. Parent, M. L. Damiani, J. A. de Macedo, F. Porto, and C. Vangenot. A conceptual view on trajectories. Trans. IEEE TKDE, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. A. Strehl, J. Ghosh, and R. Mooney. Impact of similarity measures on web-page clustering. In AAAI Workshop for Web Search, 2000.Google ScholarGoogle Scholar
  29. H. Takamura, H. Yokono, and M. Okumura. Summarizing a document stream. In Advances in Information Retrieval, pages 177--188. Springer, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. L. Vanderwende, H. Suzuki, C. Brockett, and A. Nenkova. Beyond sumbasic: Task-focused summarization with sentence simplification and lexical expansion. Information Processing & Management,2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. K. Xie, K. Deng, and X. Zhou. From trajectories to activities: a spatio-temporal join approach. In Proc. LBSN, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Z. Yan, D. Chakraborty, C. Parent, S. Spaccapietra, and K. Aberer. Semitri: a framework for semantic annotation of heterogeneous trajectories. In Proc. EDBT, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Z. Yan, D. Chakraborty, C. Parent, S. Spaccapietra, and K. Aberer. Semantic trajectories: Mobility data computation and annotation. ACM Trans. TIST, 4(3):49, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Z. Yan, N. Giatrakos, V. Katsikaros, N. Pelekis, and Y. Theodoridis. Setrastream: semantic-aware trajectory construction over streaming movement data. In SSTD. Springer, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Z. Yin, L. Cao, J. Han, C. Zhai, and T. Huang. Geographical topic discovery and comparison. In Proc. WWW, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. J.-D. Zhang and C.-Y. Chow. igslr: personalized geo-social location recommendation: a kernel density estimation approach. In Proc. SIGSPATIAL. ACM, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Y. Zheng, Y. Chen, Q. Li, X. Xie, and W.-Y. Ma. Understanding transportation modes based on gps data for web applications. Trans. ACM TWEB, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Y. Zheng, L. Zhang, X. Xie, and W.-Y. Ma. Mining interesting locations and travel sequences from gps trajectories. In Proc. WWW, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. C. Zhou, D. Frankowski, P. Ludford, S. Shekhar, and L. Terveen. Discovering personally meaningful places: An interactive clustering approach. TOIS, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Semantic Annotation of Mobility Data using Social Media

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Other conferences
      WWW '15: Proceedings of the 24th International Conference on World Wide Web
      May 2015
      1460 pages
      ISBN:9781450334693

      Copyright © 2015 Copyright is held by the International World Wide Web Conference Committee (IW3C2)

      Publisher

      International World Wide Web Conferences Steering Committee

      Republic and Canton of Geneva, Switzerland

      Publication History

      • Published: 18 May 2015

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      WWW '15 Paper Acceptance Rate131of929submissions,14%Overall Acceptance Rate1,899of8,196submissions,23%

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader