skip to main content
research-article

Schaefer's Theorem for Graphs

Published:30 June 2015Publication History
Skip Abstract Section

Abstract

Schaefer's theorem is a complexity classification result for so-called Boolean constraint satisfaction problems: it states that every Boolean constraint satisfaction problem is either contained in one out of six classes and can be solved in polynomial time, or is NP-complete.

We present an analog of this dichotomy result for the propositional logic of graphs instead of Boolean logic. In this generalization of Schaefer's result, the input consists of a set W of variables and a conjunction Φ of statements (“constraints”) about these variables in the language of graphs, where each statement is taken from a fixed finite set Ψ of allowed quantifier-free first-order formulas; the question is whether Φ is satisfiable in a graph.

We prove that either Ψ is contained in one out of 17 classes of graph formulas and the corresponding problem can be solved in polynomial time, or the problem is NP-complete. This is achieved by a universal-algebraic approach, which in turn allows us to use structural Ramsey theory. To apply the universal-algebraic approach, we formulate the computational problems under consideration as constraint satisfaction problems (CSPs) whose templates are first-order definable in the countably infinite random graph. Our method for classifying the computational complexity of those CSPs is based on a Ramsey-theoretic analysis of functions acting on the random graph, and we develop general tools suitable for such an analysis which are of independent mathematical interest.

References

  1. F. G. Abramson and L. Harrington. 1978. Models without indiscernibles. J. Symb. Logic 43, 3, 572--600.Google ScholarGoogle ScholarCross RefCross Ref
  2. M. Bodirsky. 2012. Complexity classification in infinite-domain constraint satisfaction. Mémoire d'habilitation à diriger des recherches, Université Diderot -- Paris 7. arXiv:1201.0856.Google ScholarGoogle Scholar
  3. M. Bodirsky, H. Chen, J. Kára, and T. von Oertzen. 2009. Maximal infinite-valued constraint languages. Theoret. Comput. Sci. (TCS) 410, 1684--1693. (A preliminary version appeared in Proceedings of ICALP'07.) Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. M. Bodirsky, H. Chen, and M. Pinsker. 2010. The reducts of equality up to primitive positive interdefinability. J. Symb. Logic 75, 4, 1249--1292.Google ScholarGoogle ScholarCross RefCross Ref
  5. M. Bodirsky, P. Jonsson, and T. von Oertzen. 2011. Horn versus full first-order: A complexity dichotomy for algebraic constraint satisfaction problems. J. Logic Comput. 22, 3, 643--660. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. M. Bodirsky and J. Kára. 2008. The complexity of equality constraint languages. Theory of Comput. Syst. 3, 2, 136--158. (A conference version appeared in Proceedings of Computer Science Russia (CSR'06).) Google ScholarGoogle ScholarCross RefCross Ref
  7. M. Bodirsky and J. Kára. 2009. The complexity of temporal constraint satisfaction problems. J. ACM 57, 2, 1--41. (An extended abstract appeared in the Proceedings of the Symposium on Theory of Computing (STOC'08).) Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. M. Bodirsky and J. Kára. 2010. A fast algorithm and Datalog inexpressibility for temporal reasoning. ACM Trans. Computat. Logic 11, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. M. Bodirsky and J. Nešetřril. 2006. Constraint satisfaction with countable homogeneous templates. J. Logic Computat. 16, 3, 359--373. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. M. Bodirsky and M. Pinsker. 2011a. Reducts of Ramsey structures. AMS Contemp. Math. 558 (Model Theoretic Methods in Finite Combinatorics), 489--519.Google ScholarGoogle Scholar
  11. M. Bodirsky and M. Pinsker. 2011b. Schaefer's theorem for graphs. In Proceedings of the Annual Symposium on Theory of Computing (STOC). 655--664. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. M. Bodirsky and M. Pinsker. 2014. Minimal functions on the random graph. Isr. J. Math. 200, 1, 251--296.Google ScholarGoogle ScholarCross RefCross Ref
  13. M. Bodirsky and M. Pinsker. 2015. Topological Birkhoff. Trans. Amer. Math. Soc. 367, 2527--2549.Google ScholarGoogle ScholarCross RefCross Ref
  14. M. Bodirsky, M. Pinsker, and A. Pongrácz. 2013a. The 42 reducts of the random ordered graph. Proc. LMS. To appear. (Preprint arXiv:1309.2165.)Google ScholarGoogle Scholar
  15. M. Bodirsky, M. Pinsker, and T. Tsankov. 2013b. Decidability of definability. J. Symb. Logic 78, 4, 1036--1054. (A conference version appeared in Proceedings of LICS 2011, pages 321--328.) Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. A. A. Bulatov, A. A. Krokhin, and P. G. Jeavons. 2005. Classifying the complexity of constraints using finite algebras. SIAM J. Comput. 34, 720--742. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. P. J. Cameron. 1997. The random graph. Algor. Combinat. 14, 333--351.Google ScholarGoogle ScholarCross RefCross Ref
  18. P. J. Cameron. 2001. The random graph revisited. In Proceedings of the European Congress of Mathematics, vol. 201, Birkhäuser, 267--274.Google ScholarGoogle ScholarCross RefCross Ref
  19. H. Chen. 2006. A rendezvous of logic, complexity, and algebra. SIGACT News 37, 4, 85--114. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. D. A. Cohen, P. Jeavons, P. Jonsson, and M. Koubarakis. 2000. Building tractable disjunctive constraints. J. ACM 47, 5, 826--853. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. I. Duentsch. 2005. Relation algebras and their application in temporal and spatial reasoning. Artifi. Intell. Rev. 23, 315--357. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. G. Exoo. 1989. A lower bound for R(5,5). J. Graph Theory 13, 97--98.Google ScholarGoogle ScholarCross RefCross Ref
  23. M. Garey and D. Johnson. 1978. A Guide to NP-Completeness. CSLI Press, Stanford.Google ScholarGoogle Scholar
  24. M. Goldstern and M. Pinsker. 2008. A survey of clones on infinite sets. Algebra Univ. 59, 365--403.Google ScholarGoogle ScholarCross RefCross Ref
  25. W. Hodges. 1997. A Shorter Model Theory. Cambridge University Press, Cambridge. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. P. Jeavons, D. Cohen, and M. Gyssens. 1997. Closure properties of constraints. J. ACM 44, 4, 527--548. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. J. Nešetřril. 1995. Ramsey theory. Handbook of Combinatorics, 1331--1403. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. J. Nešetřril and V. Rödl. 1983. Ramsey classes of set systems. J. Combinat. Theory, Series A 34, 2, 183--201.Google ScholarGoogle ScholarCross RefCross Ref
  29. T. J. Schaefer. 1978. The complexity of satisfiability problems. In Proceedings of the Symposium on Theory of Computing (STOC). 216--226. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Á. Szendrei. 1986. Clones in Universal Algebra. Séminaire de Mathématiques Supérieures. Les Presses de l'Université de Montréal.Google ScholarGoogle Scholar
  31. S. Thomas. 1991. Reducts of the random graph. J. Symb. Logic 56, 1, 176--181. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. S. Thomas. 1996. Reducts of random hypergraphs. Ann. Pure Appl. Logic 80, 2, 165--193.Google ScholarGoogle ScholarCross RefCross Ref
  33. M. Westphal and S. Wölfl. 2009. Qualitative CSP, finite CSP, and SAT: Comparing methods for qualitative constraint-based reasoning. In Proceedings of the 21th International Joint Conference on Artificial Intelligence (IJCAI). 628--633. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Schaefer's Theorem for Graphs

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image Journal of the ACM
      Journal of the ACM  Volume 62, Issue 3
      June 2015
      263 pages
      ISSN:0004-5411
      EISSN:1557-735X
      DOI:10.1145/2799630
      Issue’s Table of Contents

      Copyright © 2015 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 30 June 2015
      • Accepted: 1 April 2015
      • Revised: 1 April 2013
      • Received: 1 October 2011
      Published in jacm Volume 62, Issue 3

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader