skip to main content
survey

Logic-Based Modeling Approaches for Qualitative and Hybrid Reasoning in Dynamic Spatial Systems

Published:10 August 2015Publication History
Skip Abstract Section

Abstract

Autonomous agents that operate as components of dynamic spatial systems are becoming increasingly popular and mainstream. Applications can be found in consumer robotics, in road, rail, and air transportation, manufacturing, and military operations. Unfortunately, the approaches to modeling and analyzing the behavior of dynamic spatial systems are just as diverse as these application domains. In this article, we discuss reasoning approaches for the medium-term control of autonomous agents in dynamic spatial systems, which requires a sufficiently detailed description of the agent’s behavior and environment but may still be conducted in a qualitative manner. We survey logic-based qualitative and hybrid modeling and commonsense reasoning approaches with respect to their features for describing and analyzing dynamic spatial systems in general, and the actions of autonomous agents operating therein in particular. We introduce a conceptual reference model, which summarizes the current understanding of the characteristics of dynamic spatial systems based on a catalog of evaluation criteria derived from the model. We assess the modeling features provided by logic-based qualitative commonsense and hybrid approaches for projection, planning, simulation, and verification of dynamic spatial systems. We provide a comparative summary of the modeling features, discuss lessons learned, and introduce a research roadmap for integrating different approaches of dynamic spatial system analysis to achieve coverage of all required features.

Skip Supplemental Material Section

Supplemental Material

References

  1. J. S. Albus and A. M. Meystel. 1996. A reference model architecture for design and implementation of intelligent control in large and complex systems. J. Intell. Control Syst. 1, 1 (1996), 15--30.Google ScholarGoogle ScholarCross RefCross Ref
  2. R. J. Allan. 2010. Survey of Agent Based Modelling and Simulation Tools. Technical Report DL-TR-2010-007. Computational Science and Engineering Department, STFC Daresbury Laboratory.Google ScholarGoogle Scholar
  3. J. F. Allen. 1983. Maintaining knowledge about temporal intervals. Commun. ACM 26, 11 (1983), 832--843. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. R. Alur. 2011. Formal verification of hybrid systems. In Proc. of the 11th Int. Conf. on Embedded Software, S. Chakraborty, A. Jerraya, S. K. Baruah, and S. Fischmeister (Eds.). ACM, 273--278. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P.-H. Ho, X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine. 1995. The algorithmic analysis of hybrid systems. Theor. Comput. Sci. 138, 1 (1995), 3--34. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. K. R. Apt and S. Brand. 2005. Constraint-based qualitative simulation. In Proc. of the 12th Int. Symp. on Temporal Representation and Reasoning. IEEE, 26--34. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. D. Arnott and G. Pervan. 2005. A critical analysis of decision support systems research. J. Inf. Technol. 20, 2 (2005), 67--87.Google ScholarGoogle ScholarCross RefCross Ref
  8. A. Artale and E. Franconi. 2001. A survey of temporal extensions of description logics. Ann. Math. Artif. Intell.e 30, 1--4 (2001), 171--210. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. K. J. Aström and R. M. Murray. 2008. Feedback Systems: An Introduction for Scientists and Engineers. Princeton University Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. A. Bachrach, R. He, and N. Roy. 2009. Autonomous flight in unknown indoor environments. Micro Air Vehicles 1, 4 (2009), 217--228.Google ScholarGoogle ScholarCross RefCross Ref
  11. J. C. M. Baeten. 2005. A brief history of process algebra. Theor. Comp. Sci. 335, 2--3 (2005), 131--146. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. J. Baltes. 2000. A benchmark suite for mobile robots. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, Vol. 2. IEEE, 1101--1106.Google ScholarGoogle ScholarCross RefCross Ref
  13. J. Barwise and J. Perry. 1983. Situations and Attitudes. MIT Press.Google ScholarGoogle Scholar
  14. N. Baumgartner, W. Gottesheim, S. Mitsch, W. Retschitzegger, and W. Schwinger. 2009. On optimization of predictions in ontology-driven situation awareness. In Proc. of the 3rd Int. Conf. on Knowledge Science, Engineering and Management (LNCS), D. Karagiannis and Z. Jin (Eds.), Vol. 5914. Springer, 297--309. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. N. Baumgartner, W. Gottesheim, S. Mitsch, W. Retschitzegger, and W. Schwinger. 2010a. BeAware!—situation awareness, the ontology-driven way. Data and Knowledge Eng. 69, 11 (2010), 1181--1193. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. N. Baumgartner, W. Gottesheim, S. Mitsch, W. Retschitzegger, and W. Schwinger. 2010b. Situation prediction nets - playing the token game for ontology-driven situation awareness. In Proc. of the 29th Int. Conf. on Conceptual Modeling (LNCS), J. Parsons, M. Saeki, P. Shoval, C. C. Woo, and Y. Wand (Eds.), Vol. 6412. Springer, 202--218. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. N. Baumgartner, S. Mitsch, A. Müller, A. Salfinger, W. Retschitzegger, and W. Schwinger. 2014. A tour of BeAware: A situation awareness framework for control centers. Inf. Fusion 20 (2014), 155--173.Google ScholarGoogle ScholarCross RefCross Ref
  18. N. Baumgartner and W. Retschitzegger. 2006. A survey of upper ontologies for situation awareness. In Proc. of the 4th Int. Conf. on Knowledge Sharing and Collaborative Engineering. ACTA Press, 1--9.Google ScholarGoogle Scholar
  19. N. Baumgartner, W. Retschitzegger, and W. Schwinger. 2007. Lost in time, space, and meaning—an ontology-based approach to road traffic situation awareness. In Proc. of the 3rd Workshop on Context Awareness for Proactive Systems. University of Surrey.Google ScholarGoogle Scholar
  20. B. Beckert and A. Platzer. 2006. Dynamic logic with non-rigid functions: A basis for object-oriented program verification. In IJCAR (LNCS), U. Furbach and N. Shankar (Eds.), Vol. 4130. Springer, 266--280. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. K. Van Belleghem, M. Denecker, and D. De Schreye. 1997. On the relation between situation calculus and event calculus. J. Log. Program. 31, 1--3 (1997), 3--37.Google ScholarGoogle ScholarCross RefCross Ref
  22. B. Bennett. 2004. A unifying semantics for time and events. AI 153, 1--2 (2004), 13--48. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. M. Bhatt. 2009. Commonsense inference in dynamic spatial systems: Phenomenal and reasoning requirements. In Proc. of the 23rd Int. Qualitative Reasoning Workshop. University of Ljubljana, 1--6.Google ScholarGoogle Scholar
  24. M. Bhatt. 2010. Commonsense inference in dynamic spatial systems: Epistemological requirements. In Proc. of the 23rd Int. Florida Artificial Intelligence Research Society Conf. AAAI Press.Google ScholarGoogle Scholar
  25. M. Bhatt. 2012. Reasoning about Space, Actions and Change. IGI Global, Chapter 9, 284--320.Google ScholarGoogle Scholar
  26. M. Bhatt and G. Flanagan. 2010. Spatio-temporal abduction for scenario and narrative completion. In Proc. of the Int. Workshop on Spatio-Temporal Dynamics. IOS Press, 31--36.Google ScholarGoogle Scholar
  27. M. Bhatt, J. H. Lee, and C. Schultz. 2011. CLP(QS): A declarative spatial reasoning framework. In COSIT (LNCS), M. J. Egenhofer, N. A. Giudice, R. Moratz, and M. F. Worboys (Eds.), Vol. 6899. Springer, 210--230. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. M. Bhatt and S. Loke. 2008. Modelling dynamic spatial systems in the situation calculus. Spatial Cognit. Comput. 8, 1 (2008), 86--130.Google ScholarGoogle ScholarCross RefCross Ref
  29. M. Bhatt, W. Rahayu, and G. Sterling. 2005. Qualitative simulation: Towards a situation calculus based unifying semantics for space, time and actions. In Conf. on Spatial Information Theory. Springer.Google ScholarGoogle Scholar
  30. T. Bittner. 2002. Judgements about spatio-temporal relations. In Proc. of the 8th Int. Conf. on Principles and Knowledge Representation and Reasoning. Morgan Kaufmann, 521--532.Google ScholarGoogle Scholar
  31. T. Bittner, M. Donnelly, and B. Smith. 2004. Endurants and perdurants in directly depicting ontologies. AI Commun. 17, 4 (Dec. 2004), 247--258. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. L. A. Carlson-Radvansky and D. E. Irwin. 1993. Frames of reference in vision and language: Where is above? Cognition 46, 3 (1993), 223--244.Google ScholarGoogle ScholarCross RefCross Ref
  33. A. Casagrande and C. Piazza. 2012. Model checking on hybrid automata. In Proc. of the 15th Euromicro Conf. on Digital System Design. 493--500. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Z. Chaochen, D. Guelev, and Z. Naijun. 1999. A higher-order duration calculus. In Millenial Perspectives in Computer Science. Proc. of the 1999 Oxford-Microsoft Symposium in Honour of Professor Sir Anthony Hoare, Palgrave. Springer, 13--15.Google ScholarGoogle Scholar
  35. Z. Chaochen and M. R. Hansen. 2004. Duration Calculus - A Formal Approach to Real-Time Systems. Springer.Google ScholarGoogle Scholar
  36. Z. Chaochen, A. P. Ravn, and M. R. Hansen. 1993. An extended duration calculus for hybrid real-time systems. In Hybrid Systems, R. L. Grossman, A. Nerode, A. P. Ravn, and H. Rischel (Eds.). Springer, 36--59. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. J. Choi and E. Amir. 2009. Combining motion planning with an action formalism. In Proc. of the 9th Int. Symp. on Logical Formalizations of Commonsense Reasoning, G. Lakemeyer, L. Morgenstern, and M.-A. Williams (Eds.). UTSePress (University of Technology, Sydney), 19--26.Google ScholarGoogle Scholar
  38. H. Choset, K. M. Lnych, S. Hutchinson, G. A. Kantor, W. Burgard, L. E. Kavraki, and S. Thrun. 2005. Principles of Robot Motion: Theory, Algorithms, and Implementations. MIT Press.Google ScholarGoogle Scholar
  39. E. M. Clarke and E. A. Emerson. 1981. Design and synthesis of synchronization skeletons using branching-time temporal logic. In Proc. of the Logics of Programs (LNCS), D. Kozen (Ed.), Vol. 131. Springer, 52--71. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. E. Clementini, P. Di Felice, and P. van Oosterom. 1993. A small set of formal topological relationships suitable for end-user interaction. In SSD (LNCS), D. J. Abel and B. C. Ooi (Eds.), Vol. 692. Springer, 277--295. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. A. G. Cohn. 1997. Qualitative spatial representation and reasoning techniques. In Proc. of the 21st Annual German Conf. on Artificial Intelligence: Advances in Artificial Intelligence. Springer, 1--30. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. A. G. Cohn, B. Bennett, J. M. Gooday, and N. Gotts. 1997. Qualitative spatial representation and reasoning with the region connection calculus. GeoInformatica 1, 3 (1997), 275--316. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. A. G. Cohn and S. M. Hazarika. 2001. Qualitative spatial representation and reasoning: An overview. Fundamenta Informaticae 46, 1--2 (2001), 1--29. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. A. G. Cohn and J. Renz. 2008. Qualitative spatial representation and reasoning. In Handbook of Knowledge Representation. Elsevier, 551--596.Google ScholarGoogle Scholar
  45. Z. Cui, A. G. Cohn, and D. A. Randell. 1992. Qualitative simulation based on a logical formalism of space and time. In Proc. of the 10th National Conf. on Artificial Intelligence. AAAI Press, 679--684. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. DARPA Tactical Technology Office. 2012. DARPA Robotics Challenge. Broad Agency Announcement DARPA-BAA-12-39. Defense Advanced Research Projects Agenca (DARPA), Tactical Technology Office.Google ScholarGoogle Scholar
  47. E. Davis. 2001. Continuous shape transformation & metrics on regions. Fund. Inform. 46, 1 (2001), 31--54. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. G. De Giacomo, Y. Lespérance, and F. Patrizi. 2013. Bounded epistemic situation calculus theories. In IJCAI. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. H. De Jong. 2004. Qualitative simulation and related approaches for the analysis of dynamic systems. Knowl. Eng. Rev. 19, 2 (June 2004), 93--132. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. B. De Schutter, W. P. M. H. Heemels, J. Lunze, and C. Prieur. 2009. Survey of modeling, analysis, and control of hybrid systems. In Handbook of Hybrid Systems Control -- Theory, Tools, Applications, J. Lunze and F. Lamnabhi-Lagarrigue (Eds.). Cambridge University Press, Chapter 2, 31--55.Google ScholarGoogle Scholar
  51. N. Van de Weghe, B. de Roo, Y. Qiang, M. Versichele, T. Neutens, and P. De Maeyer. 2014. The continuous spatio-temporal model (CSTM) as an exhaustive framework for multi-scale spatio-temporal analysis. Int. J. Geog. Inf. Sci. 28, 5 (2014), 1047--1060. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. M. Delafontaine, A. G. Cohn, and N. Van de Weghe. 2011. Implementing a qualitative calculus to analyse moving point objects. Expert Syst. Appl. 38, 5 (2011), 5187--5196. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. M. Dumas, W. M. P. van der Aalst, and A. H. M. ter Hofstede. 2005. Process-Aware Information Systems. John Wiley and Sons. Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. F. Dylla and M. Bhatt. 2008. Qualitative spatial scene modeling for ambient intelligence environments. In Proc. of the 1st Int. Conf. on Intelligent Robotics and Applications. Springer, 716--725. Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. F. Dylla and R. Moratz. 2005. Exploiting qualitative spatial neighborhoods in the situation calculus. In Proc of the 4th Int. Conf. on Spatial Cognition: Reasoning, Action, Interaction. Springer, 304--322. Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. F. Dylla and J. O. Wallgrün. 2007a. On generalizing orientation information in OPRAm. In Proc. of the 29th Annual German Conf. on Artificial Intelligence. Springer, 274--288. Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. F. Dylla and J. O. Wallgrün. 2007b. Qualitative spatial reasoning with conceptual neighborhoods for agent control. Intell. Rob. Syst. 48, 1 (2007), 55--78. Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. M. Egenhofer. 1989. A formal definition of binary topological relationships. In Proc. of the 3rd Int. Conf. on Foundations of Data Organization and Algorithms, Vol. 367. Springer, 457--472. Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. M. Egenhofer. 2009. A reference system for topological relations between compound spatial objects. In Proc. of the 3rd Int. Workshop on Semantic and Conceptual Issues in GIS. Springer, 307--316. Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. M. Egenhofer. 2010. The family of conceptual neighborhood graphs for region-region relations. In Proc. of the 6th Int. Conf. on Geographic Information Science. Springer, 42--55. Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. M. Egenhofer and K. K. Al Taha. 1992. Reasoning about gradual changes of topological relationships. In From Space to Territory: Theories and Methods of Spatio-Temporal Reasoning. Springer, 196--219. Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. M. Egenhofer and J. R. Herring. 1991. Categorizing Binary Topological Relationships between Regions, Lines and Points in Geographic Databases. Technical Report 7. National Center for Geographic Information and Analysis.Google ScholarGoogle Scholar
  63. M. Egenhofer and D. Mark. 1995. Modeling conceptual neighborhoods of topological line-region relations. J. Geog. Inf. Syst. 9, 5 (1995), 555--565.Google ScholarGoogle ScholarCross RefCross Ref
  64. M. Egenhofer and D. Wilmsen. 2006. Changes in topological relations when splitting and merging regions. In Proc. of the 12th Int. Symposium on Spatial Data Handling. Springer, 339--352.Google ScholarGoogle Scholar
  65. E. A. Emerson. 1990. Handbook of theoretical computer science. Vol. B. MIT Press, Chapter Temporal and modal logic, 995--1072. Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. M. R. Endsley. 2000. Theoretical Underpinnings of Situation Awareness: A Critical Review. Lawrence Erlbaum Associates, 3--33.Google ScholarGoogle Scholar
  67. A. Fehnker and F. Ivancic. 2004. Benchmarks for hybrid systems verification. In Proc. of the 7th Int. Workshop on Hybrid Systems: Computation and Control (LNCS), R. Alur and G. J. Pappas (Eds.), Vol. 2993. Springer, 326--341.Google ScholarGoogle Scholar
  68. A. Finzi and F. Pirri. 2005. Representing flexible temporal behaviors in the situation calculus. In IJCAI, L. Pack Kaelbling and A. Saffiotti (Eds.). Professional Book Center, 436--441. Google ScholarGoogle ScholarDigital LibraryDigital Library
  69. M. Fitting and R. L. Mendelsohn. 1999. First-Order Modal Logic. Kluwer, Norwell, MA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  70. A. U. Frank. 1996. Qualitative spatial reasoning: Cardinal directions as an example. J. Geog. Inf. Sci. 10, 3 (1996), 269--290.Google ScholarGoogle ScholarCross RefCross Ref
  71. G. Frehse, C. Le Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel, R. Ripado, A. Girard, T. Dang, and O. Maler. 2011. SpaceEx: Scalable verification of hybrid systems. In CAV (LNCS), G. Gopalakrishnan and S. Qadeer (Eds.), Vol. 6806. Springer, 379--395. Google ScholarGoogle ScholarDigital LibraryDigital Library
  72. C. Freksa. 1991. Conceptual neighborhood and its role in temporal and spatial reasoning. In Proc. of the Imacs Int. Workshop on Decision Support Systems and Qualitative Reasoning, M. G. Singh and L. Trave-Massuyes (Eds.). Elsevier, 181--187.Google ScholarGoogle Scholar
  73. C. Freksa. 1992. Temporal reasoning based on semi-intervals. AI 54, 1 (1992), 199--227. Google ScholarGoogle ScholarDigital LibraryDigital Library
  74. N. Fulton, S. Mitsch, J.-D. Quesel, M. Völp, and A. Platzer. 2015. KeYmaera X: An axiomatic tactical theorem prover for hybrid systems. In CADE (LNCS), A. Felty and A. Middeldorp (Eds.). Springer.Google ScholarGoogle Scholar
  75. J. Funge. 1999. Representing knowledge within the situation calculus using interval-valued epistemic fluents. Reliab. Comput. 5, 1 (1999), 35--61.Google ScholarGoogle ScholarCross RefCross Ref
  76. C. A. Furia, D. Mandrioli, A. Morzenti, and M. Rossi. 2010. Modeling time in computing: A taxonomy and a comparative survey. Comput. Surv. 42, 2 (2010), 1--59. Google ScholarGoogle ScholarDigital LibraryDigital Library
  77. A. Gabaldon and G. Lakemeyer. 2007. ESP: A logic of only-knowing, noisy sensing and acting. In AAAI. AAAI Press, 974--979. Google ScholarGoogle ScholarDigital LibraryDigital Library
  78. A. Galton. 1995. Towards a qualitative theory of movement. In Proc. of the Int. Conf. on Spatial Information Theory: A Theoretical Basis for GIS. Springer, 377--396.Google ScholarGoogle ScholarCross RefCross Ref
  79. A. Galton. 2000. Continuous motion in discrete space. In Proc. of the 7th Int. Conf. on Principles of Knowledge Representation and Reasoning. Morgan Kaufmann, 26--37.Google ScholarGoogle Scholar
  80. A. Galton. 2009. Spatial and temporal knowledge representation. Earth Sci. Inf. 2, 3 (2009), 169--187.Google ScholarGoogle Scholar
  81. A. Galton and M. F. Worboys. 2005. Processes and events in dynamic geo-networks. In Proc. of the 1st Int. Conf. on Geospatial Semantics. Springer, 45--99. Google ScholarGoogle ScholarDigital LibraryDigital Library
  82. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. 1994. Design Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley. Google ScholarGoogle ScholarDigital LibraryDigital Library
  83. A. Gangemi, N. Guarino, C. Masolo, A. Oltramari, and L. Schneider. 2002. Sweetening ontologies with DOLCE. In Proc. of the 13th Int. Conf. on Knowledge Engineering and Knowledge Management. Ontologies and the Semantic Web. Springer, 166--181. Google ScholarGoogle ScholarDigital LibraryDigital Library
  84. R. Goebel, R. Sanfelice, and A. Teel. 2009. Hybrid dynamical systems. Control Systems 29, 2 (2009), 28--93.Google ScholarGoogle ScholarCross RefCross Ref
  85. R. Goyal and M. Egenhofer. 2001. Similarity of cardinal directions. In Advances in Spatial and Temporal Databases, C. Jensen, M. Schneider, B. Seeger, and V. Tsotras (Eds.). LNCS, Vol. 2121. Springer, 36--55. Google ScholarGoogle ScholarDigital LibraryDigital Library
  86. P. Grenon and B. Smith. 2004. SNAP and SPAN: Towards dynamic spatial ontology. Spatial Cognit. Comput. 4, 1 (2004), 69--104.Google ScholarGoogle ScholarCross RefCross Ref
  87. J. F. Groote and M. A. Reniers. 2001. Algebraic Process Verification. Elsevier, Chapter 17, 1151--1208.Google ScholarGoogle Scholar
  88. M. R. Hansen and D. Hung. 2007. A theory of duration calculus with application. In Domain Modeling and the Duration Calculus, C. W. George, Z. Liu, and J. Woodcock (Eds.). Springer, 119--176. Google ScholarGoogle ScholarDigital LibraryDigital Library
  89. D. Harel. 1979. First-Order Dynamic Logic. LNCS, Vol. 68. Springer. Google ScholarGoogle ScholarDigital LibraryDigital Library
  90. B. Heath, R. Hill, and F. Ciarallo. 2009. A survey of agent-based modeling practices (January 1998 to July 2008). J. Artif. Societies Social Simul. 12, 4 (2009), 35.Google ScholarGoogle Scholar
  91. T. A. Henzinger. 1996. The theory of hybrid automata. In Proc. of the 11th Symposium on Logic in Computer Science. IEEE, 278--292. Google ScholarGoogle ScholarDigital LibraryDigital Library
  92. T. A. Henzinger, P.-H. Ho, and H. Wong-Toi. 1997. HyTech: A model checker for hybrid systems. In Computer Aided Verification, O. Grumberg (Ed.). LNCS, Vol. 1254. Springer, 460--463. Google ScholarGoogle ScholarDigital LibraryDigital Library
  93. J. Hintikka. 1962. Knowledge and Belief - An Introduction to the Logic of the Two Notions. Cornell University Press.Google ScholarGoogle Scholar
  94. K. Hornsby and M. Egenhofer. 1997. Qualitative representation of change. In Proc. of the 2nd Int. Conf. on Spatial Information Theory: A Theoretical Basis for GIS. Springer, 15--33. Google ScholarGoogle ScholarDigital LibraryDigital Library
  95. K. Hornsby, M. Egenhofer, and P. J. Hayes. 1999. Modeling cyclic change. In Proc. of the 1st Int. Workshop on Evolution and Change in Data Management. Springer, 98--109. Google ScholarGoogle ScholarDigital LibraryDigital Library
  96. J. R. James. 1987. A survey of knowledge-based systems for computer-aided control system design. In Proc. of the American Control Conference. IEEE, 2156--2161.Google ScholarGoogle Scholar
  97. R. F. Kelly and A. R. Pearce. 2007. Knowledge and observations in the situation calculus. In AAMAS, E. H. Durfee, M. Yokoo, M. N. Huhns, and O. Shehory (Eds.). IFAAMAS, 124. Google ScholarGoogle ScholarDigital LibraryDigital Library
  98. U. Khadim. 2008. Process Algebras for Hybrid Systems: Comparison and Development. Ph.D. Dissertation. Eindhoven University of Technology.Google ScholarGoogle Scholar
  99. M. M. Kokar, C. J. Matheus, and K. Baclawski. 2009. Ontology-based situation awareness. Inf. Fusion 10, 1 (2009), 83--98. Google ScholarGoogle ScholarDigital LibraryDigital Library
  100. S. Konur. 2013. A survey on temporal logics for specifying and verifying real-time systems. Frontiers of Computer Science (2013), 1--34. Google ScholarGoogle ScholarDigital LibraryDigital Library
  101. Y. Kurata and M. J. Egenhofer. 2006. The head-body-tail intersection for spatial relations between directed line segments. In GIScience (LNCS), M. Raubal, H. J. Miller, A. U. Frank, and M. F. Goodchild (Eds.), Vol. 4197. Springer, 269--286. Google ScholarGoogle ScholarDigital LibraryDigital Library
  102. Y. Kurata and M. J. Egenhofer. 2007. The 9+-intersection for topological relations between a directed line segment and a region. In BMI (CEUR Workshop Proceedings), B. Gottfried (Ed.), Vol. 296. CEUR-WS.org, 62--76.Google ScholarGoogle Scholar
  103. W. Kurschl, S. Mitsch, and J. Schönböck. 2009. Modeling distributed signal processing applications. In Proc. of the 6th Int. Workshop on Wearable and Implantable Body Sensor Networks, B. P. L. Lo and P. Mitcheson (Eds.). IEEE, 103--108. Google ScholarGoogle ScholarDigital LibraryDigital Library
  104. G. Lakemeyer. 1996. Only knowing in the situation calculus. In KR, L. C. Aiello, J. Doyle, and S. C. Shapiro (Eds.). Morgan Kaufmann, 14--25.Google ScholarGoogle Scholar
  105. G. Lakemeyer and H. J. Levesque. 1998. AOL: A logic of acting, sensing, knowing, and only knowing. In KR, Anthony G. Cohn, Lenhart K. Schubert, and Stuart C. Shapiro (Eds.). Morgan Kaufmann, 316--329.Google ScholarGoogle Scholar
  106. G. Lakemeyer and H. J. Levesque. 2004. Situations, Si! situation terms, no!. In KR, D. Dubois, C. A. Welty, and M.-A. Williams (Eds.). AAAI Press, 516--526.Google ScholarGoogle Scholar
  107. I. Lee, O. Sokolsky, S. Chen, J. Hatcliff, E. Jee, B. Kim, A. L. King, M. Mullen-Fortino, S. Park, A. Roederer, and K. K. Venkatasubramanian. 2012. Challenges and research directions in medical cyber-physical systems. Proc. IEEE 100, 1 (2012), 75--90.Google ScholarGoogle ScholarCross RefCross Ref
  108. H. J. Levesque and G. Lakemeyer. 2008. Cognitive robotics. In Handbook of Knowledge Representation, F. van Harmelen, V. Lifschitz, and B. Porter (Eds.). Foundations of Artificial Intelligence, Vol. 3. Elsevier, 869--886.Google ScholarGoogle Scholar
  109. S. M. Loos, A. Platzer, and L. Nistor. 2011. Adaptive cruise control: Hybrid, distributed, and now formally verified. In FM (LNCS), M. Butler and W. Schulte (Eds.), Vol. 6664. Springer, 42--56. Google ScholarGoogle ScholarDigital LibraryDigital Library
  110. C. Lutz, F. Wolter, and M. Zakharyaschev. 2008. Temporal description logics: A survey. In Proc. of the 15th Int. Symposium on Temporal Representation and Reasoning. IEEE, 3--14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  111. R. Madhavan, R. Lakaemper, and T. Kalmar-Nagy. 2009. Benchmarking and standardization of intelligent robotic systems. In Proc. of the 14th Int. Conf. on Advanced Robotics. IEEE, 1--7.Google ScholarGoogle Scholar
  112. C. J. Matheus, M. M. Kokar, and K. Baclawski. 2003. A core ontology for situation awareness. In Proc. of the 6th Int. Conf. on Information Fusion. IEEE, 545--552.Google ScholarGoogle Scholar
  113. C. J. Matheus, M. M. Kokar, K. Baclawski, and J. A. Letkowski. 2005. An application of semantic web technologies to situation awareness. In Proc. of the 4th Int. Semantic Web Conference. Springer, 944--958. Google ScholarGoogle ScholarDigital LibraryDigital Library
  114. I. Mau, K. Hornsby, and I. D. Bishop. 2007. Modeling geospatial events and impacts through qualitative change. In Proc. of the 5th Int. Conf. on Spatial Cognition: Reasoning, Action, Interaction. Springer, 156--174. Google ScholarGoogle ScholarDigital LibraryDigital Library
  115. J. McCarthy and P. J. Hayes. 1969. Some philosophical problems from the standpoint of artificial intelligence. In Machine Intelligence 4. Edinburgh University Press, 463--502.Google ScholarGoogle Scholar
  116. A. Miene, U. Visser, and O. Herzog. 2004. Recognition and prediction of motion situations based on a qualitative motion description. In RoboCup 2003: Robot Soccer World Cup VII. Springer, 77--88.Google ScholarGoogle Scholar
  117. J. Misener, M. Barnes, C.-Y. Chan, D. Cody, S. Dickey, R. Goodsell, T. Gordon, Z. W. Kim, T. Kuhn, T. Lian, D. Nelson, C. Nowakowski, K. Nubukawa, A. Sharafsaleh, S. Shladover, J. Spring, J. VanderWerf, W.-B. Zhang, L. Zhang, and K. Zhou. 2010. Cooperative Intersection Collision Avoidance System (CICAS): Signalized Left Turn Assist and Traffic Signal Adaptation. Technical Report UCB-ITS-PRR-2010-20. University of California, Berkeley.Google ScholarGoogle Scholar
  118. S. Mitsch, K. Ghorbal, and A. Platzer. 2013. On provably safe obstacle avoidance for autonomous robotic ground vehicles. In Robotics: Science and Systems, P. Newman, D. Fox, and D. Hsu (Eds.). TU Berlin.Google ScholarGoogle Scholar
  119. S. Mitsch, S. M. Loos, and A. Platzer. 2012. Towards formal verification of freeway traffic control. In ICCPS, C. Lu (Ed.). IEEE, 171--180. Google ScholarGoogle ScholarDigital LibraryDigital Library
  120. S. Mitsch, G. O. Passmore, and A. Platzer. 2013. A vision of collaborative verification-driven engineering of hybrid systems. In Do-Form: Enabling Domain Experts to use Formalised Reasoning. AISB, 8--17.Google ScholarGoogle Scholar
  121. S. Mitsch, G. O. Passmore, and A. Platzer. 2014a. Collaborative verification-driven engineering of hybrid systems. Math. Comput. Sci. 8, 1 (2014), 71--97.Google ScholarGoogle ScholarCross RefCross Ref
  122. S. Mitsch and A. Platzer. 2014. ModelPlex: Verified runtime validation of verified cyber-physical system models. In Runtime Verification - 5th International Conference, RV 2014, Toronto, ON, Canada, September 22-25, 2014. Proceedings (LNCS), B. Bonakdarpour and S. A. Smolka (Eds.), Vol. 8734. Springer, 199--214.Google ScholarGoogle Scholar
  123. S. Mitsch, J.-D. Quesel, and A. Platzer. 2014b. Refactoring, refinement, and reasoning - A logical characterization for hybrid systems. In FM 2014: Formal Methods - 19th International Symposium, Singapore, May 12-16, 2014. Proceedings (LNCS), C. B. Jones, P. Pihlajasaari, and J. Sun (Eds.), Vol. 8442. Springer, 481--496.Google ScholarGoogle Scholar
  124. S. Mitsch, W. Retschitzegger, and W. Schwinger. 2011. Towards modeling dynamic behavior with integrated qualitative spatial relations. In Advances in Conceptual Modeling. Recent Developments and New Directions, O. Troyer, C. Bauzer Medeiros, R. Billen, P. Hallot, A. Simitsis, and H. Mingroot (Eds.). LNCS, Vol. 6999. Springer, 271--280. Google ScholarGoogle ScholarDigital LibraryDigital Library
  125. R. Moratz, F. Dylla, and L. Frommberger. 2005. A relative orientation algebra with adjustable granularity. In Proc. of the Workshop on Agents in Real-Time and Dynamic Environments, L. P. Kaelbling and A. Saffiotti (Eds.). Professional Book Center.Google ScholarGoogle Scholar
  126. R. Moratz and J. O. Wallgrün. 2012. Spatial reasoning with augmented points: Extending cardinal directions with local distances. J. Spatial Inf. Sci. 5, 1 (2012), 1--30.Google ScholarGoogle Scholar
  127. C. Nikolai and G. Madey. 2009. Tools of the trade: A survey of various agent based modeling platforms. Artif. Soc. Social Simul. 12, 2 (2009), 2--39.Google ScholarGoogle Scholar
  128. I. Niles and A. Pease. 2001. Towards a standard upper ontology. In Proc. of the 2nd Int. Conf. on Formal Ontology in Information Systems. ACM, 2--9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  129. R. Obermaisser. 2005. Event-Triggered and Time-Triggered Control Paradigms. Springer. Google ScholarGoogle ScholarDigital LibraryDigital Library
  130. A. Platzer. 2008. Differential dynamic logic for hybrid systems. J. Autom. Reasoning 41, 2 (2008), 143--189. Google ScholarGoogle ScholarDigital LibraryDigital Library
  131. A. Platzer. 2010. Logical Analysis of Hybrid Systems: Proving Theorems for Complex Dynamics. Springer. Google ScholarGoogle Scholar
  132. A. Platzer. 2012a. A complete axiomatization of quantified differential dynamic logic for distributed hybrid systems. Logical Methods Comput. Sci. 8, 4 (2012), 1--44.Google ScholarGoogle ScholarCross RefCross Ref
  133. A. Platzer. 2012b. Logics of dynamical systems. In Proc. of the 27th Symposium on Logic in Computer Science, N. Dershowitz (Ed.). IEEE, 13--24. Google ScholarGoogle ScholarDigital LibraryDigital Library
  134. A. Platzer and J.-D. Quesel. 2008. KeYmaera: A hybrid theorem prover for hybrid systems.. In Proc. of the 4th Int. Joint Conf. on Automated Reasoning. Springer, 171--178. Google ScholarGoogle ScholarDigital LibraryDigital Library
  135. A. Platzer and J.-D. Quesel. 2009. European train control system: A case study in formal verification. In Proc. of the 11th Int. Conf. on Formal Engineering Methods (ICFEM) (LNCS), K. Breitman and A. Cavalcanti (Eds.), Vol. 5885. Springer, Rio de Janeiro, Brasil, 246--265. Google ScholarGoogle ScholarDigital LibraryDigital Library
  136. A. Pnueli. 1977. The temporal logic of programs. In Proc. of the 18th Annual Symposium on Foundations of Computer Science. IEEE, 46--57. Google ScholarGoogle ScholarDigital LibraryDigital Library
  137. V. R. Pratt. 1976. Semantical considerations on Floyd-Hoare logic. In 17th Annual Symposium on Foundations of Computer Science, Houston, Texas, USA, 25-27 October 1976. IEEE Computer Society, 109--121. Google ScholarGoogle ScholarDigital LibraryDigital Library
  138. A. Prior. 1957. Time and Modality. Oxford University Press.Google ScholarGoogle Scholar
  139. J.-D. Quesel, S. Mitsch, S. Loos, N. Aréchiga, and A. Platzer. 2015. How to model and prove hybrid systems with KeYmaera: A tutorial on safety. STTT (2015).Google ScholarGoogle Scholar
  140. M. Ragni and S. Wölfl. 2005. Temporalizing spatial calculi: On generalized neighborhood graphs. In Proc. of the 28th Annual German Conf. on Artificial Intelligence. Springer, 64--78. Google ScholarGoogle ScholarDigital LibraryDigital Library
  141. M. Ragni and S. Wölfl. 2006. Temporalizing cardinal directions: From constraint satisfaction to planning. In Proc. of the 10th Int. Conf. on Principles of Knowledge Rep. and Reasoning. AAAI, 472--480.Google ScholarGoogle Scholar
  142. M. Ragni and S. Wölfl. 2008. Reasoning about topological and positional information in dynamic settings. In Proc. of the 21st Int. Florida Artificial Intelligence Research Society Conf. AAAI, 606--611.Google ScholarGoogle Scholar
  143. D. A. Randell, Z. Cui, and A. G. Cohn. 1992. A spatial logic based on regions and connection. In Proc. of the 3rd Int. Conf. on Knowledge Rep. and Reasoning. Morgan Kaufmann, 165--176.Google ScholarGoogle Scholar
  144. S. Ratschan and Z. She. 2007. Safety verification of hybrid systems by constraint propagation based abstraction refinement. ACM Trans. Embedded Comput. Syst. 6, 1 (2007), 1--23. Google ScholarGoogle ScholarDigital LibraryDigital Library
  145. R. Reis, M. Egenhofer, and J. Matos. 2008. Conceptual neighborhoods of topological relations between lines. In 13th Int. Symp. on Spatial Data Handling, A. Ruas and C. Gold (Eds.). Springer, 557--574.Google ScholarGoogle Scholar
  146. R. Reiter. 2001. Knowledge in Action: Logical Foundations for Specifying and Implementing Dynamical Systems. MIT Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  147. S. Rosenthal, J. Biswas, and M. M. Veloso. 2010. An effective personal mobile robot agent through symbiotic human-robot interaction. In Proc. of the 9th Int. Conf. on Autonomous Agents and Multiagent Systems, W. van der Hoek, G. A. Kaminka, Y. Lespérance, M. Luck, and S. Sen (Eds.). IFAAMAS, 915--922. Google ScholarGoogle ScholarDigital LibraryDigital Library
  148. I. Ruchkin, B. R. Schmerl, and D. Garlan. 2015. Architectural abstractions for hybrid programs. In Proceedings of the 18th International ACM SIGSOFT Symposium on Component-Based Software Engineering, CBSE 2015, P. Kruchten, S. Becker, and J.-G. Schneider (Eds.). ACM, 65--74. Google ScholarGoogle ScholarDigital LibraryDigital Library
  149. S. J. Russell and P. Norvig. 2003. Artificial Intelligence — A Modern Approach (2nd ed.). Pearson Education. Google ScholarGoogle ScholarDigital LibraryDigital Library
  150. E. Sandewall. 1994. Features and Fluents: The Representation of Knowledge About Dynamical Systems. Oxford University Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  151. A. Schäfer. 2006. Specification and Verification of Mobile Real-Time Systems. Ph.D. Dissertation. Universität Oldenburg.Google ScholarGoogle Scholar
  152. R. B. Scherl and H. J. Levesque. 1993. The frame problem and knowledge-producing actions. In AAAI, R. Fikes and W. G. Lehnert (Eds.). AAAI Press/The MIT Press, 689--695. Google ScholarGoogle ScholarDigital LibraryDigital Library
  153. R. B. Scherl, T. C. Son, and C. Baral. 2009. State-based regression with sensing and knowledge. Int. J. Software Inf. 3, 1 (2009), 3--30.Google ScholarGoogle Scholar
  154. C. Schultz and M. Bhatt. 2012. Towards a declarative spatial reasoning system. In ECAI (Frontiers in Artificial Intelligence and Applications), L. De Raedt, C. Bessière, D. Dubois, P. Doherty, P. Frasconi, F. Heintz, and P. J. F. Lucas (Eds.), Vol. 242. IOS Press, 925--926.Google ScholarGoogle Scholar
  155. A. Serenko and B. Detlor. 2003. Agent toolkit satisfaction and use in higher education. J. Comput. Higher Educ. 15 (2003), 65--88. Issue 1.Google ScholarGoogle ScholarCross RefCross Ref
  156. M. Shanahan. 1997a. Event calculus planning revisited. In Proc. of the 4th European Conf. on Planning (LNCS), S. Steel and R. Alami (Eds.), Vol. 1348. Springer, 390--402. Google ScholarGoogle ScholarDigital LibraryDigital Library
  157. M. Shanahan. 1997b. Solving the Frame Problem—A Mathematical Investigation of the Common Sense Law of Inertia. MIT Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  158. M. Shanahan. 2000. An abductive event calculus planner. J. Logic Program. 44, 1--3 (2000), 207--240.Google ScholarGoogle ScholarCross RefCross Ref
  159. P. Simons and J. Melia. 2000. Continuants and occurrents. Aristotelian Society Supplementary Volume 74, 1 (2000), 59--75.Google ScholarGoogle ScholarCross RefCross Ref
  160. B. Smith and P. Grenon. 2004. The cornucopia of formal-ontological relations. Dialectica 58, 3 (2004), 279--296.Google ScholarGoogle ScholarCross RefCross Ref
  161. J. F. Sowa. 2000. Knowledge Representation—Logical, Philosophical, and Comp. Foundations. Brooks/Cole. Google ScholarGoogle ScholarDigital LibraryDigital Library
  162. R. Stewart, N. A. Stanton, D. Harris, C. Baber, P. Salmon, M. Mock, K. Tatlock, L. Wells, and A. Kay. 2008. Distributed situation awareness in an airborne warning and control system: Application of novel ergonomics methodology. Cognition, Technology & Work 10, 3 (1 July 2008), 221--229. Google ScholarGoogle ScholarDigital LibraryDigital Library
  163. M. Thielscher. 1999. From situation calculus to fluent calculus: State update axioms as a solution to the inferential frame problem. Artif. Intel. 111, 1--2 (1999), 277--299. Google ScholarGoogle ScholarDigital LibraryDigital Library
  164. M. Thielscher. 2005. FLUX: A logic programming method for reasoning agents. Theory Pract. Log. Program. 5, 4-5 (July 2005), 533--565. Google ScholarGoogle ScholarDigital LibraryDigital Library
  165. M. Thielscher. 2011. A unifying action calculus. Artif. Intell. 175, 1 (03 Jan. 2011), 120--141. Google ScholarGoogle ScholarDigital LibraryDigital Library
  166. C. Urmson, J. Anhalt, D. Bagnell, C. Baker, R. Bittner, M. N. Clark, J. Dolan, et al. 2008. Autonomous driving in urban env.: Boss and the urban challenge. J. Field Robot. 25, 8 (2008), 425--466. Google ScholarGoogle ScholarDigital LibraryDigital Library
  167. N. van de Weghe, A. G. Cohn, P. De Maeyer, and F. Witlox. 2005. Representing moving objects in computer-based expert systems: The overtake event example. Expert Syst. App. 29, 4 (2005), 977--983. Google ScholarGoogle ScholarDigital LibraryDigital Library
  168. G. H. Von Wright. 1951. An Essay on Modal Logic. North-Holland.Google ScholarGoogle Scholar
  169. M. F. Worboys. 2001. Modelling Changes and Events in Dynamic Spatial Systems with Reference to Socio-economic Units. Vol. 8. Taylor and Francis, 129--138.Google ScholarGoogle Scholar
  170. M. F. Worboys. 2005. Event-oriented approaches to geographic phenomena. Geog. Inf. Sci. 19, 1 (2005), 1--28.Google ScholarGoogle ScholarCross RefCross Ref
  171. M. F. Worboys and K. Hornsby. 2004. From objects to events: GEM, the geospatial event model. In Proc. of the 3rd Int. Conf. on Geographic Information Science. Springer, 327--343.Google ScholarGoogle Scholar

Index Terms

  1. Logic-Based Modeling Approaches for Qualitative and Hybrid Reasoning in Dynamic Spatial Systems

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Computing Surveys
      ACM Computing Surveys  Volume 48, Issue 1
      September 2015
      592 pages
      ISSN:0360-0300
      EISSN:1557-7341
      DOI:10.1145/2808687
      • Editor:
      • Sartaj Sahni
      Issue’s Table of Contents

      Copyright © 2015 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 10 August 2015
      • Accepted: 1 April 2015
      • Revised: 1 November 2014
      • Received: 1 December 2013
      Published in csur Volume 48, Issue 1

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • survey
      • Research
      • Refereed

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader