skip to main content
research-article

Shading-based refinement on volumetric signed distance functions

Published:27 July 2015Publication History
Skip Abstract Section

Abstract

We present a novel method to obtain fine-scale detail in 3D reconstructions generated with low-budget RGB-D cameras or other commodity scanning devices. As the depth data of these sensors is noisy, truncated signed distance fields are typically used to regularize out the noise, which unfortunately leads to over-smoothed results. In our approach, we leverage RGB data to refine these reconstructions through shading cues, as color input is typically of much higher resolution than the depth data. As a result, we obtain reconstructions with high geometric detail, far beyond the depth resolution of the camera itself. Our core contribution is shading-based refinement directly on the implicit surface representation, which is generated from globally-aligned RGB-D images. We formulate the inverse shading problem on the volumetric distance field, and present a novel objective function which jointly optimizes for fine-scale surface geometry and spatially-varying surface reflectance. In order to enable the efficient reconstruction of sub-millimeter detail, we store and process our surface using a sparse voxel hashing scheme which we augment by introducing a grid hierarchy. A tailored GPU-based Gauss-Newton solver enables us to refine large shape models to previously unseen resolution within only a few seconds.

Skip Supplemental Material Section

Supplemental Material

a96.mp4

mp4

19.2 MB

References

  1. Agarwal, S., Furukawa, Y., Snavely, N., Simon, I., Curless, B., Seitz, S. M., and Szeliski, R. 2011. Building rome in a day. Communications of the ACM 54, 10, 105--112. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. AgiSoft, L. 2014. Agisoft photoscan. Professional Edition.Google ScholarGoogle Scholar
  3. Beeler, T., Bradley, D., Zimmer, H., and Gross, M. 2012. Improved reconstruction of deforming surfaces by cancelling ambient occlusion. In Proc. ECCV, 30--43. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Bylow, E., Sturm, J., Kerl, C., Kahl, F., and Cremers, D. 2013. Real-time camera tracking and 3d reconstruction using signed distance functions. In Robotics: Science and Systems (RSS) Conference 2013, vol. 9.Google ScholarGoogle Scholar
  5. Carr, J. C., Beatson, R. K., Cherrie, J. B., Mitchell, T. J., Fright, W. R., McCallum, B. C., and Evans, T. R. 2001. Reconstruction and representation of 3d objects with radial basis functions. In Proc. SIGGRAPH, ACM, 67--76. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Chan, D., Buisman, H., Theobalt, C., Thrun, S., et al. 2008. A noise-aware filter for real-time depth upsampling. In Workshop on Multi-camera and Multi-modal Sensor Fusion Algorithms and Applications-M2SFA2 2008.Google ScholarGoogle Scholar
  7. Chen, Q., and Koltun, V. 2013. A simple model for intrinsic image decomposition with depth cues. In The IEEE International Conference on Computer Vision (ICCV). Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Chen, J., Bautembach, D., and Izadi, S. 2013. Scalable real-time volumetric surface reconstruction. ACM TOG 32, 4, 113. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Cui, Y., Schuon, S., Chan, D., Thrun, S., and Theobalt, C. 2010. 3d shape scanning with a time-of-flight camera. In Proc. CVPR, 1173--1180.Google ScholarGoogle Scholar
  10. Curless, B., and Levoy, M. 1996. A volumetric method for building complex models from range images. In Proceedings of the 23rd annual conference on Computer graphics and interactive techniques, ACM, 303--312. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Debevec, P. 2012. The light stages and their applications to photoreal digital actors. In SIGGRAPH Asia Technical Briefs.Google ScholarGoogle Scholar
  12. Diebel, J., and Thrun, S. 2006. An application of Markov Random Fields to range sensing. 291--298.Google ScholarGoogle Scholar
  13. Dolson, J., Baek, J., Plagemann, C., and Thrun, S. 2010. Upsampling range data in dynamic environments. In Proc. CVPR, IEEE, 1141--1148.Google ScholarGoogle Scholar
  14. Fuhrmann, S., and Goesele, M. 2014. Floating scale surface reconstruction. ACM TOG 33, 4, 46. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Ghosh, A., Fyffe, G., Tunwattanapong, B., Busch, J., Yu, X., and Debevec, P. 2011. Multiview face capture using polarized spherical gradient illumination. ACM TOG 30. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Goldluecke, B., Aubry, M., Kolev, K., and Cremers, D. 2014. A super-resolution framework for high-accuracy multiview reconstruction. ijcv 106, 2 (jan), 172--191. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Haber, T., Fuchs, C., Bekaer, P., Seidel, H.-P., Goesele, M., and Lensch, H. 2009. Relighting objects from image collections. In Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, 627--634.Google ScholarGoogle Scholar
  18. Han, Y., Lee, J.-Y., and Kweon, I. S. 2013. High quality shape from a single rgb-d image under uncalibrated natural illumination. In Proc. ICCV. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Hasinoff, S., Levin, A., Goode, P., and Freeman, W. 2011. Diffuse reflectance imaging with astronomical applications. In Proc. ICCV, 185--192. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Henry, P., Krainin, M., Herbst, E., Ren, X., and Fox, D. 2012. RGB-D mapping: Using Kinect-style depth cameras for dense 3D modeling of indoor environments. Int. J. Robotics Research 31 (apr), 647--663. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Hernández, C., Vogiatzis, G., and Cipolla, R. 2008. Multiview photometric stereo. IEEE PAMI 30, 3, 548--554. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., and Stuetzle, W. 1992. Surface reconstruction from unorganized points. In Proceedings of the 19th Annual Conference on Computer Graphics and Interactive Techniques, ACM, New York, NY, USA, SIGGRAPH '92, 71--78. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Horn, B. K. 1975. Obtaining shape from shading information. The psychology of computer vision, 115--155.Google ScholarGoogle Scholar
  24. Izadi, S., Kim, D., Hilliges, O., Molyneaux, D., Newcombe, R., Kohli, P., Shotton, J., Hodges, S., Freeman, D., Davison, A., et al. 2011. Kinectfusion: real-time 3d reconstruction and interaction using a moving depth camera. In Proc. UIST, ACM, 559--568. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Kazhdan, M., Bolitho, M., and Hoppe, H. 2006. Poisson surface reconstruction. In Proc. SGP. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Kehl, W., Navab, N., and Ilic, S. 2014. Coloured signed distance fields for full 3d object reconstruction. In Proc. BMVC.Google ScholarGoogle Scholar
  27. Keller, M., Lefloch, D., Lambers, M., Izadi, S., Weyrich, T., and Kolb, A. 2013. Real-time 3d reconstruction in dynamic scenes using point-based fusion. In Proc. 3DV, 1--8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Kopf, J., Cohen, M. F., Lischinski, D., and Uyttendaele, M. 2007. Joint bilateral upsampling. ACM TOG 26, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Lee, K. J., Zhao, Q., Tong, X., Gong, M., Izadi, S., Lee, S. U., Tan, P., and Lin, S. 2012. Estimation of intrinsic image sequences from image+depth video. In Proc. ECCV, 327--340. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Levoy, M., Pulli, K., Curless, B., Rusinkiewicz, S., Koller, D., Pereira, L., Ginzton, M., Anderson, S., Davis, J., Ginsberg, J., Shade, J., and Fulk, D. 2000. The digital michelangelo project: 3d scanning of large statues. In Proc. SIGGRAPH, 131--144. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Lindner, M., Kolb, A., and Hartmann, K. 2007. Data-fusion of PMD-based distance-information and high-resolution RGB-images. In Proc. ISSCS, 121--124.Google ScholarGoogle Scholar
  32. Lowe, D. G. 2004. Distinctive image features from scale-invariant keypoints. IJCV 60, 2, 91--110. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Mulligan, J., and Brolly, X. 2004. Surface determination by photometric ranging. In Proc. CVPR Workshops. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Nair, R., Ruhl, K., Lenzen, F., Meister, S., Schäfer, H., Garbe, C. S., Eisemann, M., Magnor, M., and Kondermann, D. 2013. A survey on time-of-flight stereo fusion. In Time-of-Flight and Depth Imaging. Sensors, Algorithms, and Applications. Springer, 105--127.Google ScholarGoogle Scholar
  35. Nehab, D., Rusinkiewicz, S., Davis, J., and Ramamoorthi, R. 2005. Efficiently combining positions and normals for precise 3D geometry. Proc. SIGGRAPH 24, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Newcombe, R. A., and Davison, A. J. 2010. Live dense reconstruction with a single moving camera. In Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on, IEEE, 1498--1505.Google ScholarGoogle Scholar
  37. Newcombe, R. A., Davison, A. J., Izadi, S., Kohli, P., Hilliges, O., Shotton, J., Molyneaux, D., Hodges, S., Kim, D., and Fitzgibbon, A. 2011. Kinectfusion: Real-time dense surface mapping and tracking. In Proc. ISMAR, IEEE, 127--136. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Niessner, M., Zollhöfer, M., Izadi, S., and Stamminger, M. 2013. Real-time 3d reconstruction at scale using voxel hashing. ACM TOG 32, 6, 169. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Park, J., Kim, H., Tai, Y.-W., Brown, M. S., and Kweon, I.-S. 2011. High quality depth map upsampling for 3d-tof cameras. In Proc. ICCV, IEEE, 1623--1630. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Pradeep, V., Rhemann, C., Izadi, S., Zach, C., Bleyer, M., and Bathiche, S. 2013. Monofusion: Real-time 3d reconstruction of small scenes with a single web camera. In Proc. ISMAR.Google ScholarGoogle Scholar
  41. Prados, E., and Faugeras, O. 2005. Shape from shading: a well-posed problem? In Proc. CVPR. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Ramamoorthi, R., and Hanrahan, P. 2001. A signal-processing framework for inverse rendering. In Proc. SIGGRAPH, ACM, 117--128. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Richardt, C., Stoll, C., Dodgson, N. A., Seidel, H.-P., and Theobalt, C. 2012. Coherent spatiotemporal filtering, upsampling and rendering of RGBZ videos. CGF (Proceedings of Eurographics) 31, 2 (May). Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Roth, H., and Vona, M. 2012. Moving volume kinectfusion. In BMVC, 1--11.Google ScholarGoogle Scholar
  45. Rusinkiewicz, S., Hall-Holt, O., and Levoy, M. 2002. Real-time 3D model acquisition. ACM TOG 21, 3, 438--446. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Scharstein, D., Hirschmüller, H., Kitajima, Y., Krathwohl, G., Nešić, N., Wang, X., and Westling, P. 2014. High-resolution stereo datasets with subpixel-accurate ground truth. In Pattern Recognition. Springer, 31--42.Google ScholarGoogle Scholar
  47. Schuon, S., Theobalt, C., Davis, J., and Thrun, S. 2009. Lidarboost: Depth superresolution for tof 3d shape scanning. In Proc. CVPR, IEEE, 343--350.Google ScholarGoogle Scholar
  48. Seitz, S., Curless, B., Diebel, J., Scharstein, D., and Szeliski, R. 2006. A comparison and evaluation of multi-view stereo reconstruction algorithms. In Proc. CVPR, vol. 1, 519--528. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Snavely, N., Seitz, S. M., and Szeliski, R. 2006. Photo tourism: exploring photo collections in 3d. ACM TOG 25, 3, 835--846. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Triggs, B., Mclauchlan, P. F., Hartley, R. I., and Fitzgibbon, A. W. 2000. Bundle adjustment--a modern synthesis. In Vision algorithms: theory and practice. Springer, 298--372. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Weber, D., Bender, J., Schnoes, M., Stork, A., and Fellner, D. 2013. Efficient gpu data structures and methods to solve sparse linear systems in dynamics applications. In CGF, vol. 32, Wiley Online Library, 16--26.Google ScholarGoogle Scholar
  52. Weise, T., Wismer, T., Leibe, B., and Van Gool, L. 2009. In-hand scanning with online loop closure. In ICCV Workshops, 1630--1637.Google ScholarGoogle ScholarCross RefCross Ref
  53. Whelan, T., Kaess, M., Fallon, M., Johannsson, H., Leonard, J., and McDonald, J. 2012. Kintinuous: Spatially extended kinectfusion.Google ScholarGoogle Scholar
  54. Wu, C., Varanasi, K., Liu, Y., Seidel, H.-P., and Theobalt, C. 2011. Shading-based dynamic shape refinement from multi-view video under general illumination. In Proc. ICCV, IEEE, 1108--1115. Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. Wu, C., Stoll, C., Valgaerts, L., and Theobalt, C. 2013. On-set performance capture of multiple actors with a stereo camera. ACM TOG (Proc. SIGGRAPh Asia) 32, 6, 161. Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. Wu, C., Zollhöfer, M., Niessner, M., Stamminger, M., Izadi, S., and Theobalt, C. 2014. Real-time shading-based refinement for consumer depth cameras. ACM TOG (Proc. SIGGRAPH Asia) 33, 6, 200:1--200:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. Yu, L.-F., Yeung, S.-K., Tai, Y.-W., and Lin, S. 2013. Shading-based shape refinement of rgb-d images. In Proc. CVPR. Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. Zhang, Z., Tsa, P.-S., Cryer, J. E., and Shah, M. 1999. Shape from shading: A survey. IEEE PAMI 21, 8, 690--706. Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. Zhou, Q.-Y., and Koltun, V. 2014. Color map optimization for 3d reconstruction with consumer depth cameras. ACM Transactions on Graphics (TOG) 33, 4, 155. Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. Zollhöfer, M., Niessner, M., Izadi, S., Rehmann, C., Zach, C., Fisher, M., Wu, C., Fitzgibbon, A., Loop, C., Theobalt, C., et al. 2014. Real-time non-rigid reconstruction using an rgb-d camera. ACM TOG (Proc. SIGGRAPH) 4. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Shading-based refinement on volumetric signed distance functions

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 34, Issue 4
        August 2015
        1307 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/2809654
        Issue’s Table of Contents

        Copyright © 2015 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 27 July 2015
        Published in tog Volume 34, Issue 4

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader