skip to main content
research-article

Nonlinear material design using principal stretches

Published:27 July 2015Publication History
Skip Abstract Section

Abstract

The Finite Element Method is widely used for solid deformable object simulation in film, computer games, virtual reality and medicine. Previous applications of nonlinear solid elasticity employed materials from a few standard families such as linear corotational, nonlinear St.Venant-Kirchhoff, Neo-Hookean, Ogden or Mooney-Rivlin materials. However, the spaces of all nonlinear isotropic and anisotropic materials are infinite-dimensional and much broader than these standard materials. In this paper, we demonstrate how to intuitively explore the space of isotropic and anisotropic nonlinear materials, for design of animations in computer graphics and related fields. In order to do so, we first formulate the internal elastic forces and tangent stiffness matrices in the space of the principal stretches of the material. We then demonstrate how to design new isotropic materials by editing a single stress-strain curve, using a spline interface. Similarly, anisotropic (orthotropic) materials can be designed by editing three curves, one for each material direction. We demonstrate that modifying these curves using our proposed interface has an intuitive, visual, effect on the simulation. Our materials accelerate simulation design and enable visual effects that are difficult or impossible to achieve with standard nonlinear materials.

Skip Supplemental Material Section

Supplemental Material

a75.mp4

mp4

18 MB

References

  1. Allard, J., Marchal, M., Cotin, S., et al. 2009. Fiber-based fracture model for simulating soft tissue tearing. Studies in health technology and informatics 142, 13--18.Google ScholarGoogle Scholar
  2. Ball, J. 1976. Convexity conditions and existence theorems in nonlinear elasticity. Archive for Rational Mechanics and Analysis 63, 4, 337--403.Google ScholarGoogle ScholarCross RefCross Ref
  3. Becker, M., and Teschner, M. 2007. Robust and efficient estimation of elasticity parameters using the linear finite element method. In Simulation und Visualisierung Conf. (SimVis), 15--28.Google ScholarGoogle Scholar
  4. Bickel, B., Baecher, M., Otaduy, M., Matusik, W., Pfister, H., and Gross, M. 2009. Capture and modeling of non-linear heterogeneous soft tissue. ACM Trans. on Graphics (SIGGRAPH 2009) 28, 3, 89:1--89:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Bonet, J., and Burton, A. 1998. A simple orthotropic, transversely isotropic hyperelastic constitutive equation for large strain computations. Computer Methods in Applied Mechanics and Engineering 162, 151--164.Google ScholarGoogle ScholarCross RefCross Ref
  6. Bonet, J., and Wood, R. D. 1997. Nonlinear Continuum Mechanics for Finite Element Analysis. Cambridge Univ. Press.Google ScholarGoogle Scholar
  7. Bower, A. 2011. Applied Mechanics of Solids. Taylor & Francis.Google ScholarGoogle Scholar
  8. Capell, S., Green, S., Curless, B., Duchamp, T., and Popović, Z. 2002. Interactive skeleton-driven dynamic deformations. ACM Trans. on Graphics (SIGGRAPH 2002) 21, 3, 586--593. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Carmichael, A., and Holdaway, H. 1961. Phenomenological elastomechanical behavior of rubbers over wide ranges of strain. Journal of Applied Physics 32, 2, 159--166.Google ScholarGoogle ScholarCross RefCross Ref
  10. Chao, I., Pinkall, U., Sanan, P., and Schröder, P. 2010. A Simple Geometric Model for Elastic Deformations. ACM Trans. on Graphics (SIGGRAPH 2010) 29, 3, 38:1--38:6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Civit-Flores, O., and Susín, A. 2014. Robust Treatment of Degenerate Elements in Interactive Corotational FEM Simulations. Computer Graphics Forum 33, 6, 298--309.Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Drucker, D. C. 1957. A definition of stable inelastic material. Tech. rep., DTIC Document.Google ScholarGoogle Scholar
  13. Gao, Z., Kim, T., James, D. L., and Desai, J. P. 2009. Semi-automated soft-tissue acquisition and modeling for surgical simulation. In Proc. of the 5th IEEE Int. Conf. on Automation Science and Engineering, 268--273. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Hahn, F., Thomaszewski, B., Coros, S., Sumner, R., and Gross, M. 2013. Efficient simulation of secondary motion in rig-space. In Symp. on Computer Animation (SCA), 165--171. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Hernandez, F., Cirio, G., Perez, A., and Otaduy, M. 2013. Anisotropic strain limiting. In Proc. of Congreso Español de Informática Gráfica, vol. 2.Google ScholarGoogle Scholar
  16. Irving, G., Teran, J., and Fedkiw, R. 2004. Invertible Finite Elements for Robust Simulation of Large Deformation. In Symp. on Computer Animation (SCA), 131--140. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Kikuuwe, R., Tabuchi, H., and Yamamoto, M. 2009. An edge-based computationally efficient formulation of saint venant-kirchhoff tetrahedral finite elements. ACM Trans. on Graphics 28, 1, 1--13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Lee, H.-P., and Lin, M. 2012. Fast optimization-based elasticity parameter estimation using reduced models. The Visual Computer 28, 6-8, 553--562. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Li, Y., and Barbič, J. 2014. Stable orthotropic materials. In Symp. on Computer Animation (SCA), 41--46.Google ScholarGoogle Scholar
  20. Li, S., Huang, J., de Goes, F., Jin, X., Bao, H., and Desbrun, M. 2014. Space-time editing of elastic motion through material optimization and reduction. ACM Trans. on Graphics (SIGGRAPH 2014) 33, 4, 108:1--108:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. McAdams, A., Zhu, Y., Selle, A., Empey, M., Tamstorf, R., Teran, J., and Sifakis, E. 2011. Efficient elasticity for character skinning with contact and collisions. ACM Trans. on Graphics (SIGGRAPH 2011) 30, 4, 37:1--37:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Mooney, M. 1940. A theory of large elastic deformation. Journal of applied physics 11, 9, 582--592.Google ScholarGoogle ScholarCross RefCross Ref
  23. Müller, M., and Gross, M. 2004. Interactive Virtual Materials. In Proc. of Graphics Interface 2004, 239--246. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. O'Brien, J., and Hodgins, J. 1999. Graphical Modeling and Animation of Brittle Fracture. In Proc. of ACM SIGGRAPH 1999, 111--120. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Ogden, R. W. 1997. Non-linear elastic deformations. Courier Dover Publications.Google ScholarGoogle Scholar
  26. Papadopoulo, T., and Lourakis, M. I. 2000. Estimating the Jacobian of the singular value decomposition: Theory and application. In European Conf. on Computer Vision, 554--570. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Parker, E. G., and O'Brien, J. F. 2009. Real-time deformation and fracture in a game environment. In Symp. on Computer Animation (SCA), 156--166. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Perez, A., Cirio, G., Hernandez, F., Garre, C., and Otaduy, M. 2013. Strain limiting for soft finger contact simulation. In World Haptics Conference (WHC), 2013, 79--84.Google ScholarGoogle ScholarCross RefCross Ref
  29. Picinbono, G., Delingette, H., and Ayache, N. 2001. Non-linear and anisotropic elastic soft tissue models for medical simulation. In IEEE Int. Conf. on Robotics and Automation 2001.Google ScholarGoogle Scholar
  30. Shoemake, K. 1985. Animating rotation with quaternion curves. In Proc. of ACM SIGGRAPH 1985, 245--254. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Sifakis, E., and Barbič, J. 2012. FEM simulation of 3D deformable solids: A practitioner's guide to theory, discretization and model reduction. In SIGGRAPH 2012 Course Notes. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Sifakis, E., Neverov, I., and Fedkiw, R. 2005. Automatic determination of facial muscle activations from sparse motion capture marker data. ACM Trans. on Graphics (SIGGRAPH 2005) 24, 3, 417--425. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Stomakhin, A., Howes, R., Schroeder, C., and Teran, J. M. 2012. Energetically consistent invertible elasticity. In Symp. on Computer Animation (SCA), 25--32. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Sussman, T., and Bathe, K.-J. 2009. A model of incompressible isotropic hyperelastic material behavior using spline interpolations of tension--compression test data. Communications in Numerical Methods in Engineering 25, 1, 53--63.Google ScholarGoogle ScholarCross RefCross Ref
  35. Talbot, H., Marchesseau, S., Duriez, C., Sermesant, M., Cotin, S., and Delingette, H. 2013. Towards an interactive electromechanical model of the heart. Interface focus 3, 2, 20120091.Google ScholarGoogle Scholar
  36. Ten Thije, R., Akkerman, R., and Huétink, J. 2007. Large deformation simulation of anisotropic material using an updated lagrangian finite element method. Computer methods in applied mechanics and engineering 196, 33, 3141--3150.Google ScholarGoogle Scholar
  37. Teran, J., Blemker, S., Hing, V. N. T., and Fedkiw, R. 2003. Finite volume methods for the simulation of skeletal muscle. In Symp. on Computer Animation (SCA), 68--74. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Teran, J., Sifakis, E., Irving, G., and Fedkiw, R. 2005. Robust Quasistatic Finite Elements and Flesh Simulation. In Symp. on Computer Animation (SCA), 181--190. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Thomaszewski, B., Pabst, S., and Strasser, W. 2009. Continuum-based strain limiting. Computer Graphics Forum (Eurographics 2009) 28, 2, 569--576.Google ScholarGoogle Scholar
  40. Twigg, C., and Kačić-Alesić, Z. 2010. Point cloud glue: constraining simulations using the procrustes transform. In Symp. on Computer Animation (SCA), 45--54. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Valanis, K., and Landel, R. 1967. The strain-energy function of a hyperelastic material in terms of the extension ratios. Journal of Applied Physics 38, 7, 2997--3002.Google ScholarGoogle ScholarCross RefCross Ref
  42. Wang, H., O'Brien, J., and Ramamoorthi, R. 2010. Multi-resolution isotropic strain limiting. ACM Trans. on Graphics (SIGGRAPH Asia 2010) 29, 6, 156:1--156:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Wang, H., O'Brien, J. F., and Ramamoorthi, R. 2011. Data-driven elastic models for cloth: modeling and measurement. ACM Trans. on Graphics (SIGGRAPH 2011) 30, 4, 71:1--71:11. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Nonlinear material design using principal stretches

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in

          Full Access

          • Published in

            cover image ACM Transactions on Graphics
            ACM Transactions on Graphics  Volume 34, Issue 4
            August 2015
            1307 pages
            ISSN:0730-0301
            EISSN:1557-7368
            DOI:10.1145/2809654
            Issue’s Table of Contents

            Copyright © 2015 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 27 July 2015
            Published in tog Volume 34, Issue 4

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • research-article

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader