skip to main content
research-article

The light field stereoscope: immersive computer graphics via factored near-eye light field displays with focus cues

Published:27 July 2015Publication History
Skip Abstract Section

Abstract

Over the last few years, virtual reality (VR) has re-emerged as a technology that is now feasible at low cost via inexpensive cellphone components. In particular, advances of high-resolution micro displays, low-latency orientation trackers, and modern GPUs facilitate immersive experiences at low cost. One of the remaining challenges to further improve visual comfort in VR experiences is the vergence-accommodation conflict inherent to all stereoscopic displays. Accurate reproduction of all depth cues is crucial for visual comfort. By combining well-known stereoscopic display principles with emerging factored light field technology, we present the first wearable VR display supporting high image resolution as well as focus cues. A light field is presented to each eye, which provides more natural viewing experiences than conventional near-eye displays. Since the eye box is just slightly larger than the pupil size, rank-1 light field factorizations are sufficient to produce correct or nearly-correct focus cues; no time-multiplexed image display or gaze tracking is required. We analyze lens distortions in 4D light field space and correct them using the afforded high-dimensional image formation. We also demonstrate significant improvements in resolution and retinal blur quality over related near-eye displays. Finally, we analyze diffraction limits of these types of displays.

Skip Supplemental Material Section

Supplemental Material

a60.mp4

mp4

16.4 MB

References

  1. Akeley, K., Watt, S. J., Girshick, A. R., and Banks, M. S. 2004. A stereo display prototype with multiple focal distances. ACM Trans. Graph. (SIGGRAPH) 23, 804--813. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Benton, S., and Bove, V. 2006. Holographic Imaging. John Wiley and Sons. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Brown, D. 2000. Decentering distortion of lenses. Photogrammetric Engineering 32, 3, 444462.Google ScholarGoogle Scholar
  4. Cakmakci, O., and Rolland, J. 2006. Head-worn displays: a review. Journal of Display Technology 2, 3, 199--216.Google ScholarGoogle ScholarCross RefCross Ref
  5. Clarberg, P., Toth, R., Hasselgren, J., Nilsson, J., and Akenine-Möller, T. 2014. Amfs: Adaptive multi-frequency shading for future graphics processors. ACM Trans. Graph. 33, 4 (July), 141:1--141:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Cutting, J. E., and Vishton, P. M. 1995. Perceiving layout and knowing distances: The interaction, relative potency, and contextual use of different information about depth. W. Epstein and S. Rogers (Eds.), Perception of space and motion, 69--117.Google ScholarGoogle Scholar
  7. Favalora, G. E. 2005. Volumetric 3D displays and application infrastructure. IEEE Computer 38, 37--44. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Hale, K., and Stanney, K. 2014. Handbook of Virtual Environments. CRC Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Heide, F., Lanman, D., Reddy, D., Kautz, J., Pulli, K., and Luebke, D. 2014. Cascaded displays: Spatiotemporal superresolution using offset pixel layers. ACM Trans. Graph. (SIGGRAPH) 33, 4, 60:1--60:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Held, R., Cooper, E., and Banks, M. 2012. Blur and Disparity Are Complementary Cues to Depth. Current Biology 22, R163--R165.Google ScholarGoogle ScholarCross RefCross Ref
  11. Hirsch, M., Wetzstein, G., and Raskar, R. 2014. A Compressive Light Field Projection System. ACM Trans. Graph. (Proc. SIGGRAPH) 33, 4, 1--12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Hoffman, D. M., and Banks, M. S. 2010. Focus information is used to interpret binocular images. Journal of Vision 10, 5, 13.Google ScholarGoogle ScholarCross RefCross Ref
  13. Hua, H., and Javidi, B. 2014. A 3d integral imaging optical see-through head-mounted display. OSA Opt. Exp. 22, 11, 13484--13491.Google ScholarGoogle ScholarCross RefCross Ref
  14. Huang, F.-C., Wetzstein, G., Barsky, B. A., and Raskar, R. 2014. Eyeglasses-free display: Towards correcting visual aberrations with computational light field displays. ACM Trans. Graph. (SIGGRAPH) 33, 4, 59:1--59:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Jones, A., McDowall, I., Yamada, H., Bolas, M., and Debevec, P. 2007. Rendering for an interactive 360° light field display. ACM Trans. Graph. (SIGGRAPH) 26, 40:1--40:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Kelly, D. H. 1979. Motion and vision. ii. stabilized spatiotemporal threshold surface. Journal of the Optical Society of America 69, 1340--1349.Google ScholarGoogle ScholarCross RefCross Ref
  17. Kress, B., and Starner, T. 2013. A review of head-mounted displays (hmd) technologies and applications for consumer electronics. In Proc. SPIE, vol. 8720, 87200A--87200A--13.Google ScholarGoogle Scholar
  18. Lanman, D., and Luebke, D. 2013. Near-eye light field displays. ACM Trans. Graph. (SIGGRAPH Asia) 32, 6, 220:1--220:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Lanman, D., Hirsch, M., Kim, Y., and Raskar, R. 2010. Content-adaptive parallax barriers: Optimizing dual-layer 3D displays using low-rank light field factorization. ACM Trans. Graph. (SIGGRAPH Asia) 29, 163:1--163:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Levoy, M., and Hanrahan, P. 1996. Light Field Rendering. In ACM SGGRAPH, 31--42. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Liu, S., Cheng, D., and Hua, H. 2008. An optical see-through head mounted display with addressable focal planes. In Proc. ISMAR, 33--42. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Love, G. D., Hoffman, D. M., Hands, P. J., Gao, J., Kirby, A. K., and Banks, M. S. 2009. High-speed switchable lens enables the development of a volumetric stereoscopic display. OSA Optics Express 17, 18, 15716--15725.Google ScholarGoogle ScholarCross RefCross Ref
  23. MacKenzie, K. J., Hoffman, D. M., and Watt, S. J. 2010. Accommodation to multiplefocalplane displays: Implications for improving stereoscopic displays and for accommodation control. Journal of Vision 10, 8.Google ScholarGoogle ScholarCross RefCross Ref
  24. Maimone, A., and Fuchs, H. 2013. Computational augmented reality eyeglasses. In Proc. ISMAR, 29--38.Google ScholarGoogle Scholar
  25. Maimone, A., Wetzstein, G., Hirsch, M., Lanman, D., Raskar, R., and Fuchs, H. 2013. Focus 3d: Compressive accommodation display. ACM Trans. Graph. 32, 5, 153:1--153:13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Maimone, A., Lanman, D., Rathinavel, K., Keller, K., Luebke, D., and Fuchs, H. 2014. Pinlight displays: Wide field of view augmented reality eyeglasses using defocused point light sources. ACM Trans. Graph. (SIGGRAPH) 33, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Marshall, J. A., Marshall, J. A., Ariely, D., Burbeck, C. A., Aricly, T. D., Rolland, J. P., and Martin, K. E. 1996. Occlusion edge blur: A cue to relative visual depth. OSA JOSAA 13, 681--688.Google ScholarGoogle ScholarCross RefCross Ref
  28. Marwah, K., Wetzstein, G., Bando, Y., and Raskar, R. 2013. Compressive Light Field Photography using Overcomplete Dictionaries and Optimized Projections. ACM Trans. Graph. (Proc. SIGGRAPH). Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Rothbaum, B., Hodges, L., Ready, D., Graap, K., and Alarcon, R. 2001. Virtual reality exposure therapy for vietnam veterans with posttraumatic stress disorder. Ann Surg 62, 8, 617--22.Google ScholarGoogle Scholar
  30. Ruch, T., and Fulton, J. F. 1960. Medical physiology and biophysics. W. B. Saunders Company.Google ScholarGoogle Scholar
  31. Rushton, S. K., and Riddell, P. M. 1999. Developing visual systems and exposure to virtual reality and stereo displays: some concerns and speculations about the demands on accommodation and vergence. Appl Ergonomics 30, 69--78.Google ScholarGoogle ScholarCross RefCross Ref
  32. Ryana, L., MacKenziea, K., and Watta, S. 2012. Multiple-focal-planes 3d displays: A practical solution to the vergence-accommodation conflict? In Proc. 3D Imaging (IC3D), 1--6.Google ScholarGoogle Scholar
  33. Schowengerdt, B. T., and Seibel, E. J. 2006. True 3-d scanned voxel displays using single or multiple light sources. Journal of the Society for Information Display 14, 2, 135--143.Google ScholarGoogle ScholarCross RefCross Ref
  34. Seetzen, H., Heidrich, W., Stuerzlinger, W., Ward, G., Whitehead, L., Trentacoste, M., Ghosh, A., and Vorozcovs, A. 2004. High dynamic range display systems. ACM Trans. Graph. (SIGGRAPH) 23, 3, 760--768. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Sullivan, A. 2003. A solid-state multi-planar volumetric display. In SID Digest, vol. 32, 207--211.Google ScholarGoogle Scholar
  36. Sutherland, I. 1968. A head-mounted three dimensional display. In Proc. AFIPS Fall Joint Computer Conference. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Takaki, Y., Tanaka, K., and Nakamura, J. 2011. Super multi-view display with a lower resolution flat-panel display. Opt. Express 19, 5, 4129--4139.Google ScholarGoogle ScholarCross RefCross Ref
  38. Takaki, Y. 2006. High-Density Directional Display for Generating Natural Three-Dimensional Images. Proc. IEEE 94, 3.Google ScholarGoogle ScholarCross RefCross Ref
  39. Watt, S., Akeley, K., Ernst, M., and Banks, M. 2005. Focus cues affect perceived depth. Journal of Vision 5, 10, 834--862.Google ScholarGoogle ScholarCross RefCross Ref
  40. Wetzstein, G., Lanman, D., Heidrich, W., and Raskar, R. 2011. Layered 3D: Tomographic image synthesis for attenuation-based light field and high dynamic range displays. ACM Trans. Graph. (SIGGRAPH) 30, 1--11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Wetzstein, G., Lanman, D., Hirsch, M., and Raskar, R. 2012. Tensor Displays: Compressive Light Field Synthesis using Multilayer Displays with Directional Backlighting. ACM Trans. Graph. (SIGGRAPH) 31, 1--11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Wheatstone, C. 1838. Contributions to the physiology of vision. part the first. on some remarkable, and hitherto unobserved, phenomena of binocular vision. Philosophical Transactions of the Royal Society of London 128, 371--394.Google ScholarGoogle ScholarCross RefCross Ref
  43. Zhang, Z. 2000. A flexible new technique for camera calibration. IEEE Trans. PAMI 22, 11, 1330--1334. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Zwicker, M., Matusik, W., Durand, F., and Pfister, H. 2006. Antialiasing for automultiscopic 3D displays. In EGSR. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. The light field stereoscope: immersive computer graphics via factored near-eye light field displays with focus cues

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 34, Issue 4
      August 2015
      1307 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/2809654
      Issue’s Table of Contents

      Copyright © 2015 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 27 July 2015
      Published in tog Volume 34, Issue 4

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader