skip to main content
research-article

Online control of simulated humanoids using particle belief propagation

Published:27 July 2015Publication History
Skip Abstract Section

Abstract

We present a novel, general-purpose Model-Predictive Control (MPC) algorithm that we call Control Particle Belief Propagation (C-PBP). C-PBP combines multimodal, gradient-free sampling and a Markov Random Field factorization to effectively perform simultaneous path finding and smoothing in high-dimensional spaces. We demonstrate the method in online synthesis of interactive and physically valid humanoid movements, including balancing, recovery from both small and extreme disturbances, reaching, balancing on a ball, juggling a ball, and fully steerable locomotion in an environment with obstacles. Such a large repertoire of movements has not been demonstrated before at interactive frame rates, especially considering that all our movement emerges from simple cost functions. Furthermore, we abstain from using any precomputation to train a control policy offline, reference data such as motion capture clips, or state machines that break the movements down into more manageable subtasks. Operating under these conditions enables rapid and convenient iteration when designing the cost functions.

Skip Supplemental Material Section

Supplemental Material

References

  1. Arulampalam, M., Maskell, S., Gordon, N., and Clapp, T. 2002. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans. Signal Process. 50, 2, 174--188. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Borno, M. A., Fiume, E., Hertzmann, A., and de Lasa, M. 2014. Feedback control for rotational movements in feature space. Comput. Graph. Forum 33, 2, 225--233. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Coros, S., Beaudoin, P., and van de Panne, M. 2010. Generalized biped walking control. ACM Trans. Graph. 29, 4 (July), 130:1--130:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Da Silva, M., Abe, Y., and Popović, J. 2008. Simulation of Human Motion Data using Short-Horizon Model-Predictive Control. Comput. Graphics Forum 27, 2, 371--380.Google ScholarGoogle ScholarCross RefCross Ref
  5. Eele, A., Maciejowski, J., Chau, T., and Luk, W. 2013. Parallelisation of Sequential Monte Carlo for real-time control in air traffic management. In Proc. CDC 2013, 4859--4864.Google ScholarGoogle Scholar
  6. Geijtenbeek, T., and Pronost, N. 2012. Interactive Character Animation Using Simulated Physics: A State-of-the-Art Review. Comput. Graphics Forum 31, 8, 2492--2515. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Geijtenbeek, T., van de Panne, M., and van der Stappen, A. F. 2013. Flexible muscle-based locomotion for bipedal creatures. ACM Trans. Graph. 32, 6 (Nov.), 206:1--206:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Guo, S., Southern, R., Chang, J., Greer, D., and Zhang, J. 2014. Adaptive motion synthesis for virtual characters: a survey. The Visual Computer, 1--16. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Ha, S., Ye, Y., and Liu, C. K. 2012. Falling and landing motion control for character animation. ACM Trans. Graph. 31, 6, 155:1--155:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Hämäläinen, P., Eriksson, S., Tanskanen, E., Kyrki, V., and Lehtinen, J. 2014. Online motion synthesis using sequential monte carlo. ACM Trans. Graph. 33, 4 (July), 51:1--51:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Ihler, A. T., and Mcallester, D. A. 2009. Particle belief propagation. In Proc. International Conference on Artificial Intelligence and Statistics, 256--263.Google ScholarGoogle Scholar
  12. Jain, S., Ye, Y., and Liu, C. K. 2009. Optimization-based interactive motion synthesis. ACM Trans. Graph. 28, 1 (Feb.), 10:1--10:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Janson, L., Clark, A., and Pavone, M. 2013. Fast marching tree: a fast marching sampling-based method for optimal motion planning in many dimensions. arXiv preprint arXiv:1306.3532.Google ScholarGoogle Scholar
  14. Kalakrishnan, M., Chitta, S., Theodorou, E., Pastor, P., and Schaal, S. 2011. STOMP: Stochastic trajectory optimization for motion planning. In Proc. ICRA 2011, IEEE, 4569--4574.Google ScholarGoogle Scholar
  15. Kantas, N., Maciejowski, J., and Lecchini-Visintini, A. 2009. Sequential monte carlo for model predictive control. In Nonlinear Model Predictive Control. Springer, 263--273.Google ScholarGoogle Scholar
  16. Kappen, H. J., Gómez, V., and Opper, M. 2012. Optimal control as a graphical model inference problem. Machine learning 87, 2, 159--182. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Lavalle, S. M. 1998. Rapidly-exploring random trees: A new tool for path planning. Tech. rep., Iowa State Univ.Google ScholarGoogle Scholar
  18. Lee, Y., Kim, S., and Lee, J. 2010. Data-driven Biped Control. ACM Trans. Graph. 29, 4, 129:1--129:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Liu, L., Yin, K., van de Panne, M., and Guo, B. 2012. Terrain Runner: Control, Parameterization, Composition, and Planning for Highly Dynamic Motions. ACM Trans. Graph. 31, 6, 154:1--154:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Mordatch, I., de Lasa, M., and Hertzmann, A. 2010. Robust Physics-based Locomotion Using Low-dimensional Planning. ACM Trans. Graph. 29, 4, 71:1--71:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Mordatch, I., Todorov, E., and Popović, Z. 2012. Discovery of complex behaviors through contact-invariant optimization. ACM Trans. Graph. 31, 4 (July), 43:1--43:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Muico, U., Lee, Y., Popović, J., and Popović, Z. 2009. Contact-aware nonlinear control of dynamic characters. ACM Trans. Graph. 28, 3, 81:1--81:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Pejsa, T., and Pandzic, I. 2010. State of the Art in Example-Based Motion Synthesis for Virtual Characters in Interactive Applications. Comput. Graphics Forum 29, 1, 202--226.Google ScholarGoogle ScholarCross RefCross Ref
  24. Schmidt, R. A., and Wrisberg, C. A. 2008. Motor Learning and Performance, 4rd ed. Human Kinetics.Google ScholarGoogle Scholar
  25. Stahl, D., and Hauth, J. 2011. PF-MPC: Particle filter-model predictive control. Syst. Control Lett. 60, 8, 632--643.Google ScholarGoogle ScholarCross RefCross Ref
  26. Sudderth, E. B., Ihler, A. T., Isard, M., Freeman, W. T., and Willsky, A. S. 2010. Nonparametric belief propagation. Commun. ACM 53, 10, 95--103. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Tan, J., Gu, Y., Liu, C. K., and Turk, G. 2014. Learning bicycle stunts. ACM Trans. Graph. 33, 4, 50:1--50:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Tassa, Y., Erez, T., and Todorov, E. 2012. Synthesis and stabilization of complex behaviors through online trajectory optimization. In Proc. IROS, 4906--4913.Google ScholarGoogle Scholar
  29. Tassa, Y., Mansard, N., and Todorov, E. 2014. Control-limited differential dynamic programming. In Proc. ICRA 2014, IEEE, 1168--1175.Google ScholarGoogle Scholar
  30. Todorov, E. 2008. General duality between optimal control and estimation. In Proc. CDC 2008, 4286--4292.Google ScholarGoogle ScholarCross RefCross Ref
  31. Toussaint, M. 2009. Robot trajectory optimization using approximate inference. In Proc. ICML 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Wampler, K., Popović, Z., and Popović, J. 2014. Generalizing locomotion style to new animals with inverse optimal regression. ACM Trans. Graph. 33, 4 (July), 49:1--49:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Witkin, A., and Kass, M. 1988. Spacetime Constraints. SIGGRAPH Comput. Graph. 22, 4, 159--168. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Wu, J.-C., and Popović, Z. 2010. Terrain-adaptive bipedal locomotion control. ACM Trans. Graph. 29, 4, 72:1--72:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Xu, J., Duindam, V., Alterovitz, R., and Goldberg, K. 2008. Motion planning for steerable needles in 3d environments with obstacles using rapidly-exploring random trees and backchaining. In Proc. CASE 2008, IEEE, 41--46.Google ScholarGoogle Scholar
  36. Ye, Y., and Liu, C. K. 2010. Optimal Feedback Control for Character Animation Using an Abstract Model. ACM Trans. Graph. 29, 4, 74:1--74:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Yin, K., Loken, K., and van de Panne, M. 2007. Simbicon: Simple biped locomotion control. ACM Trans. Graph. 26, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Online control of simulated humanoids using particle belief propagation

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 34, Issue 4
      August 2015
      1307 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/2809654
      Issue’s Table of Contents

      Copyright © 2015 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 27 July 2015
      Published in tog Volume 34, Issue 4

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader