skip to main content
10.1145/2785956.2787486acmconferencesArticle/Chapter ViewAbstractPublication PagescommConference Proceedingsconference-collections
research-article
Free Access

A Control-Theoretic Approach for Dynamic Adaptive Video Streaming over HTTP

Published:17 August 2015Publication History

ABSTRACT

User-perceived quality-of-experience (QoE) is critical in Internet video applications as it impacts revenues for content providers and delivery systems. Given that there is little support in the network for optimizing such measures, bottlenecks could occur anywhere in the delivery system. Consequently, a robust bitrate adaptation algorithm in client-side players is critical to ensure good user experience. Previous studies have shown key limitations of state-of-art commercial solutions and proposed a range of heuristic fixes. Despite the emergence of several proposals, there is still a distinct lack of consensus on: (1) How best to design this client-side bitrate adaptation logic (e.g., use rate estimates vs. buffer occupancy); (2) How well specific classes of approaches will perform under diverse operating regimes (e.g., high throughput variability); or (3) How do they actually balance different QoE objectives (e.g., startup delay vs. rebuffering). To this end, this paper makes three key technical contributions. First, to bring some rigor to this space, we develop a principled control-theoretic model to reason about a broad spectrum of strategies. Second, we propose a novel model predictive control algorithm that can optimally combine throughput and buffer occupancy information to outperform traditional approaches. Third, we present a practical implementation in a reference video player to validate our approach using realistic trace-driven emulations.

Skip Supplemental Material Section

Supplemental Material

p325-yin.webm

webm

164.3 MB

References

  1. Dash-Industry-Forum, dash.js . https://github.com/Dash-Industry-Forum/dash.js/wiki.Google ScholarGoogle Scholar
  2. Adobe HTTP Dynamic Streaming. www.adobe.com/products/hds-dynamic-streaming.html.Google ScholarGoogle Scholar
  3. Adobe OSMF player. http://www.osmf.org.Google ScholarGoogle Scholar
  4. Akamai HD network. www.akamai.com/hdnetwork.Google ScholarGoogle Scholar
  5. Apple's HTTP Live Streaming. https://developer.apple.com/streaming/.Google ScholarGoogle Scholar
  6. DASH-264 JavaScript reference client landing page 1.4.0. http://dashif.org/reference/players/javascript/1.4.0/samples/dash-if-reference-player/index.html.Google ScholarGoogle Scholar
  7. DASH Industry Forum members. http://dashif.org/members/.Google ScholarGoogle Scholar
  8. DASH VLC plugin. http://www-itec.uni-klu.ac.at/dash/?page_id=10.Google ScholarGoogle Scholar
  9. FCC dataset. https://www.fcc.gov/measuring-broadband-america. Accessed: 2014--12-01.Google ScholarGoogle Scholar
  10. HSDPA dataset. http://home.ifi.uio.no/paalh/dataset/hsdpa-tcp-logs. Accessed: 2014--12-01.Google ScholarGoogle Scholar
  11. Netflix. http://www.netflix.com/.Google ScholarGoogle Scholar
  12. OSMF 2.0 release code. http://sourceforge.net/projects/osmf.adobe/files/latest/download.Google ScholarGoogle Scholar
  13. Smooth Streaming protocol. http://go.microsoft.com/?linkid=9682896.Google ScholarGoogle Scholar
  14. The demo page for our MPC-based bitrate adaptation. http://users.ece.cmu.edu/~vsekar/mpcdash.html.Google ScholarGoogle Scholar
  15. YouTube live encoder settings, bitrates and resolutions. https://support.google.com/youtube/answer/2853702?hl=en.Google ScholarGoogle Scholar
  16. I. Sodagar. The MPEG-DASH Standard for Multimedia Streaming Over the Internet. IEEE Multimedia, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. S. Akhshabi, L. Anantakrishnan, C. Dovrolis, and A. C. Begen. What Happens when HTTP Adaptive Streaming Players Compete for Bandwidth? In Proc. NOSSDAV, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. S. Akhshabi, L. Ananthakrishnan, A. Begen, and C. Dovrolis. Server-Based Traffic Shaping for Stabilizing Oscillating Adaptive Streaming Players. In Proc. ACM SIGMM NOSSDAV, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. A. Balachandran, V. Sekar, A. Akella, S. Seshan, I. Stoica, and H. Zhang. Developing a Predictive Model of Quality of Experience for Internet Video. In Proc. ACM SIGCOMM, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. H. Balakrishnan, M. Stemm, S. Seshan, and R. H. Katz. Analyzing Stability in WideArea Network Performance. In Proc. ACM SIGMETRICS, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. D. P. Bertsekas, D. P. Bertsekas, D. P. Bertsekas, and D. P. Bertsekas. Dynamic Programming and Optimal Control, volume~1. Athena Scientific Belmont, MA, 1995. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. E. F. Camacho and C. B. Alba. Model Predictive Control. Springer, 2013.Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. L. D. Cicco, V. Caldaralo, V. Palmisano, and S. Mascolo. TAPAS: a Tool for rApid Prototyping of Adaptive Streaming algorithms. In Proc.\ CoNext VideoNext workshop, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. F. Dobrian, V. Sekar, A. Awan, I. Stoica, D. A. Joseph, A. Ganjam, J. Zhan, and H. Zhang. Understanding the Impact of Video Quality on User Engagement. In Proc. ACM SIGCOMM, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. G. F. Franklin, J. D. Powell, and M. L. Workman. Digital Control of Dynamic Systems, volume~3. Addison-Wesley Menlo Park, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. A. Ganjam, F. Siddiqui, J. Zhan, X. Liu, I. Stoica, J. Jiang, V. Sekar, and H. Zhang. C3: Internet-Scale Control Plane for Video Quality Optimization. In Proc. NSDI, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. M. Ghobadi, Y. Cheng, A. Jain, and M. Mathis. Trickle: Rate Limiting YouTube Video Streaming. In Proc. USENIX ATC, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. S. Gouache, G. Bichot, A. Bsila, and C. Howson. Distributed and Adaptive HTTP Streaming. In Proc. ICME, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. D. Havey, R. Chertov, and K. Almeroth. Receiver Driven Rate Adaptation for Wireless Multimedia Applications. In Proc. MMSys, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Q. He, C. Dovrolis, and M. Ammar. On the Predictability of Large Transfer TCP Throughput. In Proc. ACM SIGCOMM, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. R. Houdaille and S. Gouache. Shaping HTTP Adaptive Streams for a Better User Experience. In Proc. MMSys, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. T.-Y. Huang, N. Handigol, B. Heller, N. McKeown, and R. Johari. Confused, Timid, and Unstable: Picking a Video Streaming Rate is Hard. In Proc. IMC, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. T.-Y. Huang, R. Johari, N. McKeown, M. Trunnell, and M. Watson. A Buffer-Based Approach to Rate Adaptation: Evidence from a Large Video Streaming Service. In Proc. ACM SIGCOMM, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. J. Jiang, V. Sekar, and H. Zhang. Improving Fairness, Efficiency, and Stability in HTTP-based Adaptive Video Streaming with FESTIVE. In Proc. CoNext, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. S. S. Krishnan and R. K. Sitaraman. Video Stream Quality Impacts Viewer Behavior: Inferring Causality using Quasi-Experimental Designs. In Proc. IMC, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. R. Kuschnig, I. Kofler, and H. Hellwagner. Evaluation of HTTP-based Request-Response Streams for Internet Video Streaming. Multimedia Systems, pages 245--256, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. L. De Cicco, S. Mascolo, and V. Palmisano. Feedback Control for Adaptive Live Video Streaming. In Proc. of ACM Multimedia Systems Conference, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Z. Li, X. Zhu, J. Gahm, R. Pan, H. Hu, A. Begen, and D. Oran. Probe and Adapt: Rate Adaptation for HTTP Video Streaming at Scale. Selected Areas in Communications, IEEE Journal on, 32(4):719--733, 2014.Google ScholarGoogle Scholar
  39. C. Liu, I. Bouazizi, and M. Gabbouj. Parallel Adaptive HTTP Media Streaming. In Proc. ICCCN, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  40. H. Liu, Y. Wang, Y. R. Yang, A. Tian, and H. Wang. Optimizing Cost and Performance for Content Multihoming. In Proc. ACM SIGCOMM, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. X. Liu, F. Dobrian, H. Milner, J. Jiang, V. Sekar, I. Stoica, and H. Zhang. A Case for a Coordinated Internet Video Control Plane. In Proc. ACM SIGCOMM, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. R. K. P. Mok, X. Luo, E. W. W. Chan, and R. K. C. Chang. QDASH: A QoE-aware DASH system. In Proc. MMSys, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. C. Mueller, S. Lederer, J. Poecher, and C. Timmerer. Libdash - An Open Source Software Library for the MPEG-DASH Standard. In Proc. ICME, 2013.Google ScholarGoogle Scholar
  44. L. Popa, A. Ghodsi, and I. Stoica. HTTP as the Narrow Waist of the Future Internet. In Proc. HotNets, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. R. Rejaie and J. Kangasharju. Mocha: A Quality Adaptive Multimedia Proxy Cache for Internet Streaming. In Proc. NOSSDAV, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. S. Akhshabi, A. Begen, C. Dovrolis. An Experimental Evaluation of Rate Adaptation Algorithms in Adaptive Streaming over HTTP. In Proc. MMSys, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. G. Tian and Y. Li. Towards Agile and Smooth Video Adaption in Dynamic HTTP Streaming . In Proc. CoNext, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Y. Wang and S. Boyd. Fast Model Predictive Control using Online Optimization. Control Systems Technology, IEEE Transactions on, 18(2):267--278, 2010.Google ScholarGoogle Scholar
  49. B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold, M. Hibler, C. Barb, and A. Joglekar. An Integrated Experimental Environment for Distributed Systems and Networks. Proc. OSDI, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. X. Yin, V. Sekar, and B. Sinopoli. Toward a Principled Framework to Design Dynamic Adaptive Streaming Algorithms over HTTP. In Proc. ACM SIGCOMM HotNets, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Y. Zhang and N. Duffield. On the Constancy of Internet Path Properties. In IMW, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. X. K. Zou, J. Erman, V. Gopalakrishnan, E. Halepovic, R. Jana, X. Jin, J. Rexford, and R. K. Sinha. Can Accurate Predictions Improve Video Streaming in Cellular Networks? In Proc. ACM HotMobile, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. A Control-Theoretic Approach for Dynamic Adaptive Video Streaming over HTTP

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Conferences
          SIGCOMM '15: Proceedings of the 2015 ACM Conference on Special Interest Group on Data Communication
          August 2015
          684 pages
          ISBN:9781450335423
          DOI:10.1145/2785956

          Copyright © 2015 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 17 August 2015

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

          Acceptance Rates

          SIGCOMM '15 Paper Acceptance Rate40of242submissions,17%Overall Acceptance Rate554of3,547submissions,16%

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader