skip to main content
10.1145/2789168.2790110acmconferencesArticle/Chapter ViewAbstractPublication PagesmobicomConference Proceedingsconference-collections
research-article

Human Sensing Using Visible Light Communication

Published:07 September 2015Publication History

ABSTRACT

We present LiSense, the first-of-its-kind system that enables both data communication and fine-grained, real-time human skeleton reconstruction using Visible Light Communication (VLC). LiSense uses shadows created by the human body from blocked light and reconstructs 3D human skeleton postures in real time. We overcome two key challenges to realize shadow-based human sensing. First, multiple lights on the ceiling lead to diminished and complex shadow patterns on the floor. We design light beacons enabled by VLC to separate light rays from different light sources and recover the shadow pattern cast by each individual light. Second, we design an efficient inference algorithm to reconstruct user postures using 2D shadow information with a limited resolution collected by photodiodes embedded in the floor. We build a 3 m x 3 m LiSense testbed using off-the-shelf LEDs and photodiodes. Experiments show that LiSense reconstructs the 3D user skeleton at 60 Hz in real time with 10 degrees mean angular error for five body joints.

References

  1. Google Project Jacquard. https://www.google.com/atap/project-jacquard/.Google ScholarGoogle Scholar
  2. Adib, F., Kabelac, Z., and Katabi, D. Multi-Person Motion Tracking via RF Body Reflections. In Proc. of NSDI (2015). Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Adib, F., Kabelac, Z., Katabi, D., and Miller, R. C. 3D Tracking via Body Radio Reflections. In Proc. of NSDI (2014). Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Adib, F., and Katabi, D. See through walls with WiFi! In Proc. of SIGCOMM (2013). Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Afgani, M. Z., Haas, H., Elgala, H., and Knipp, D. Visible light communication using OFDM. In Proc. of TRIDENTCOM (2006).Google ScholarGoogle ScholarCross RefCross Ref
  6. Arai, S., et al. Experimental on hierarchical transmission scheme for visible light communication using LED traffic light and high-speed camera. In Proc. of VTC (2007).Google ScholarGoogle ScholarCross RefCross Ref
  7. Ashok, A., et al. Challenge: Mobile optical networks through visual MIMO. In Proc. of MobiCom (2010). Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Association, I. S., et al. IEEE Std. for Local and metropolitan area networks-Part 15.7: Short-Rang Wireless Optical Communication Using Visible Light. IEEE Computer Society (2011).Google ScholarGoogle Scholar
  9. Beaudoin, P., Poulin, P., and van de Panne, M. Adapting wavelet compression to human motion capture clips. In Proc. of GI (2007). Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Chen, V. C., Li, F., Ho, S.-S., and Wechsler, H. Analysis of micro-doppler signatures. IEE Proceedings-Radar, Sonar and Navigation 150, 4 (2003), 271--276.Google ScholarGoogle ScholarCross RefCross Ref
  11. Cheung, G. K., Kanade, T., Bouguet, J.-Y., and Holler, M. A real time system for robust 3D voxel reconstruction of human motions. In Proc. of CVPR (2000).Google ScholarGoogle ScholarCross RefCross Ref
  12. Dietz, P., Yerazunis, W., and Leigh, D. Very low-cost sensing and communication using bidirectional LEDs. In Proc. of UbiComp (2003).Google ScholarGoogle ScholarCross RefCross Ref
  13. Duhamel, P., and Hollmann, H. Split radix FFT algorithm. Electronics letters 20, 1 (1984), 14--16.Google ScholarGoogle Scholar
  14. Elgala, H., Mesleh, R., Haas, H., and Pricope, B. OFDM visible light wireless communication based on white LEDs. In Proc. of VTC (2007).Google ScholarGoogle ScholarCross RefCross Ref
  15. Fernandez-Baena, A., Susın, A., and Lligadas, X. Biomechanical validation of upper-body and lower-body joint movements of kinect motion capture data for rehabilitation treatments. In Proc. of INCoS (2012). Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Ghaddar, M., Talbi, L., and Denidni, T. Human body modelling for prediction of effect of people on indoor propagation channel. Electronics Letters 40, 25 (2004), 1592--1594.Google ScholarGoogle ScholarCross RefCross Ref
  17. Gupta, S., Morris, D., Patel, S., and Tan, D. SoundWave: Using the Doppler effect to sense gestures. In Proc. of CHI (2012). Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Hao, T., Zhou, R., and Xing, G. COBRA: Color barcode streaming for smartphone systems. In Proc. of MobiSys (2012). Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Henry, P., Krainin, M., Herbst, E., Ren, X., and Fox, D. RGB-D mapping: Using depth cameras for dense 3D modeling of indoor environments. In Proc. of ISER (2010).Google ScholarGoogle Scholar
  20. Herda, L., Fua, P., Plankers, R., Boulic, R., and Thalmann, D. Skeleton-based motion capture for robust reconstruction of human motion. In Proc. of International Conference on Computer Animation (2000). Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Howe, N. R., Leventon, M. E., and Freeman, W. T. Bayesian Reconstruction of 3D Human Motion from Single-Camera Video. In Proc. of NIPS (1999).Google ScholarGoogle Scholar
  22. Hu, W., Gu, H., and Pu, Q. LightSync: Unsynchronized visual communication over screen-camera links. In Proc. of MobiCom (2013). Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Hu, W., Mao, J., Huang, Z., Xue, Y., She, J., Bian, K., and Shen, G. Strata: Layered Coding for Scalable Visual Communication. In Proc. of MobiCom (2014). Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Izadi, S., Kim, D., Hilliges, O., Molyneaux, D., Newcombe, R., Kohli, P., Shotton, J., Hodges, S., Freeman, D., Davison, A., et al. KinectFusion: real-time 3D reconstruction and interaction using a moving depth camera. In Proc. of UIST (2011). Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Jerri, A. J. The Shannon sampling theorem--Its various extensions and applications: A tutorial review. Proc. of the IEEE (1977).Google ScholarGoogle ScholarCross RefCross Ref
  26. Jhuang, H., Gall, J., Zuffi, S., Schmid, C., and Black, M. J. Towards understanding action recognition. In Proc. of ICCV (2013). Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Kim, D., Hilliges, O., Izadi, S., Butler, A. D., Chen, J., Oikonomidis, I., and Olivier, P. Digits: Freehand 3D Interactions Anywhere Using a Wrist-worn Gloveless Sensor. In Proc. of UIST (2012). Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Kim, H.-S., et al. An indoor visible light communication positioning system using a RF carrier allocation technique. Journal of Lightwave Technology 31, 1 (2013), 134--144.Google ScholarGoogle ScholarCross RefCross Ref
  29. Komine, T., and Nakagawa, M. Integrated system of white LED visible-light communication and power-line communication. IEEE Transactions on Consumer Electronics 49, 1 (2003), 71--79. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Komine, T., and Nakagawa, M. Fundamental analysis for visible-light communication system using LED lights. IEEE Transactions on Consumer Electronics 50, 1 (2004), 100--107. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Krosshaug, T., and Bahr, R. A model-based image-matching technique for three-dimensional reconstruction of human motion from uncalibrated video sequences. Journal of biomechanics 38, 4 (2005), 919--929.Google ScholarGoogle Scholar
  32. Kuo, Y.-S., Pannuto, P., Hsiao, K.-J., and Dutta, P. Luxapose: Indoor positioning with mobile phones and visible light. In Proc. of MobiCom (2014). Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Le-Minh, H., et al. 100-Mb/s NRZ visible light communications using a postequalized white LED. Photonics Technology Letters, IEEE 21, 15 (2009), 1063--1065.Google ScholarGoogle ScholarCross RefCross Ref
  34. Le Minh, H., O'Brien, D., Faulkner, G., Zeng, L., Lee, K., Jung, D., Oh, Y., and Won, E. T. 100-Mb/s NRZ visible light communications using a postequalized white LED. Photonics Technology Letters, IEEE 21, 15 (2009), 1063--1065.Google ScholarGoogle Scholar
  35. Lee, K., and Park, H. Modulations for visible light communications with dimming control. Photonics Technology Letters, IEEE 23, 16 (2011), 1136--1138.Google ScholarGoogle ScholarCross RefCross Ref
  36. Li, L., Hu, P., Peng, C., Shen, G., and Zhao, F. Epsilon: A visible light based positioning system. In Proc. of NSDI (2014). Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Li, T., An, C., Xiao, X., Campbell, A. T., and Zhou, X. Real-Time Screen-Camera Communication Behind Any Scene. In Proc. of MobiSys (2015). Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Little, T. D. C., et al. Using LED lighting for ubiquitous indoor wireless networking. In Proc. of WiMob (2008). Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Liu, C. B., Sadeghi, B., and Knightly, E. W. Enabling vehicular visible light communication (V2LC) networks. In Proc. of VANET (2011). Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. McKinney, J. C., and Hopkins, C. D. R. ATSC digital television standard. Advanced Television System Committee (1995).Google ScholarGoogle Scholar
  41. Moeslund, T. B., Hilton, A., and Krüger, V. A survey of advances in vision-based human motion capture and analysis. Computer vision and image understanding 104, 2 (2006), 90--126. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Mohr, R., Quan, L., and Veillon, F. Relative 3D reconstruction using multiple uncalibrated images. The International Journal of Robotics Research 14, 6 (1995), 619--632. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Moschini, D., and Fusiello, A. Tracking human motion with multiple cameras using an articulated model. In Computer Vision/Computer Graphics Collaboration Techniques. Springer, 2009, pp. 1--12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Perli, S. D., Ahmed, N., and Katabi, D. PixNet: Interference-free wireless links using LCD-camera pairs. In Proc. of MobiCom (2010). Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Post, E. R., Orth, M., Russo, P. R., and Gershenfeld, N. E-broidery: Design and fabrication of textile-based computing. IBM Systems Journal 39, 3.4 (2000), 840--860. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Pu, Q., Gupta, S., Gollakota, S., and Patel, S. Whole-home gesture recognition using wireless signals. In Proc. of MobiCom (2013). Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Quintana, C., et al. Reading lamp-based visible light communication system for in-flight entertainment. Consumer Electronics, IEEE Transactions on 59, 1 (2013), 31--37.Google ScholarGoogle Scholar
  48. Rajagopal, N., Lazik, P., and Rowe, A. Visual light landmarks for mobile devices. In Proc. of IPSN (2014). Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Rajagopal, S., Roberts, R., and Lim, S.-K. IEEE 802.15.7 visible light communication: modulation schemes and dimming support. Communications Magazine, IEEE 50, 3 (2012), 72--82.Google ScholarGoogle Scholar
  50. Ryckaert, J., De Doncker, P., Meys, R., de Le Hoye, A., and Donnay, S. Channel model for wireless communication around human body. Electronics Letters 40, 9 (2004), 543--544.Google ScholarGoogle ScholarCross RefCross Ref
  51. Saxena, A., Chung, S. H., and Ng, A. Y. 3-D depth reconstruction from a single still image. International journal of computer vision 76, 1 (2008), 53--69. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Sb\^ırlea, D., Burke, M. G., Guarnieri, S., Pistoia, M., and Sarkar, V. Automatic detection of inter-application permission leaks in android applications. IBM Journal of Research and Development 57, 6 (2013), 10--1. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. Schill, F., Zimmer, U. R., and Trumpf, J. Visible spectrum optical communication and distance sensing for underwater applications. In In Proc. of Australasian Conference on Robotics and Automation (2004).Google ScholarGoogle Scholar
  54. Schmid, S., Corbellini, G., Mangold, S., and Gross, T. R. LED-to-LED visible light communication networks. In Proc. of MobiHoc (2013). Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. Segen, J., and Kumar, S. Shadow gestures: 3D hand pose estimation using a single camera. In Proc. of CVPR (1999).Google ScholarGoogle ScholarCross RefCross Ref
  56. Shoemaker, G., Tang, A., and Booth, K. S. Shadow reaching: a new perspective on interaction for large displays. In Proc. of UIST (2007). Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. Shotton, J., et al. Real-time human pose recognition in parts from single depth images. In Proc. of CVPR (2011). Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. Silaghi, M.-C., Plankers, R., Boulic, R., Fua, P., and Thalmann, D. Local and global skeleton fitting techniques for optical motion capture. In Modelling and Motion Capture Techniques for Virtual Environments. Springer, 1998, pp. 26--40. Google ScholarGoogle ScholarCross RefCross Ref
  59. Tsonev, D., et al. A 3-Gb/s Single-LED OFDM-based Wireless VLC Link Using a Gallium Nitride μLED. Photonics Technology Letters, IEEE PP, 99 (2014), 1--1.Google ScholarGoogle Scholar
  60. Wall, M. 'Li-fi' via LED light bulb data speed breakthrough. BBC News, 2013.Google ScholarGoogle Scholar
  61. Wang, A., Ma, S., Hu, C., Huai, J., Peng, C., and Shen, G. Enhancing Reliability to Boost the Throughput over Screen-camera Links. In Proc. of MobiCom (2014). Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. Wang, J., Vasisht, D., and Katabi, D. RF-IDraw: Virtual Touch Screen in the Air Using RF Signals. In Proc. of SIGCOMM (2014). Google ScholarGoogle ScholarDigital LibraryDigital Library
  63. Wang, Y., Liu, J., Chen, Y., Gruteser, M., Yang, J., and Liu, H. E-eyes: Device-free Location-oriented Activity Identification Using Fine-grained WiFi Signatures. In Proc. of MobiCom (2014). Google ScholarGoogle ScholarDigital LibraryDigital Library
  64. Weinberg, Z., Chen, E. Y., Jayaraman, P. R., and Jackson, C. I still know what you visited last summer: Leaking browsing history via user interaction and side channel attacks. In Proc. of IEEE Symposium on Security and Privacy (2011). Google ScholarGoogle ScholarDigital LibraryDigital Library
  65. Welch, T., Musselman, R., Emessiene, B., Gift, P., Choudhury, D., Cassadine, D., and Yano, S. The effects of the human body on UWB signal propagation in an indoor environment. IEEE Journal on Selected Areas in Communications 20, 9 (2002), 1778--1782. Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. Whitaker, R. T. A level-set approach to 3D reconstruction from range data. International journal of computer vision 29, 3 (1998), 203--231. Google ScholarGoogle ScholarDigital LibraryDigital Library
  67. Yeung, K.-Y., Kwok, T.-H., and Wang, C. C. Improved Skeleton Tracking by Duplex Kinects: A Practical Approach for Real-Time Applications. Journal of Computing and Information Science in Engineering 13, 4 (2013), 041007.Google ScholarGoogle ScholarCross RefCross Ref
  68. Zeng, L., et al. High data rate multiple input multiple output (MIMO) optical wireless communications using white LED lighting. IEEE Journal on Selected Areas in Communications 27, 9 (2009), 1654--1662. Google ScholarGoogle ScholarDigital LibraryDigital Library
  69. Zhang, W., and Kavehrad, M. Comparison of VLC-based indoor positioning techniques. In Proc. of SPIE (2013).Google ScholarGoogle ScholarCross RefCross Ref
  70. Zhang, Z., et al. I Am the Antenna: Accurate Outdoor AP Location Using Smartphones. In Proc. of MobiCom (2011). Google ScholarGoogle ScholarDigital LibraryDigital Library
  71. Zhou, X., and Campbell, A. Visible Light Networking and Sensing. In Proc. of HotWireless (2014). Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Human Sensing Using Visible Light Communication

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        MobiCom '15: Proceedings of the 21st Annual International Conference on Mobile Computing and Networking
        September 2015
        638 pages
        ISBN:9781450336192
        DOI:10.1145/2789168

        Copyright © 2015 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 7 September 2015

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

        Acceptance Rates

        MobiCom '15 Paper Acceptance Rate38of207submissions,18%Overall Acceptance Rate440of2,972submissions,15%

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      ePub

      View this article in ePub.

      View ePub