skip to main content
10.1145/2807591.2807676acmconferencesArticle/Chapter ViewAbstractPublication PagesscConference Proceedingsconference-collections
research-article

Massively parallel models of the human circulatory system

Published:15 November 2015Publication History

ABSTRACT

The potential impact of blood flow simulations on the diagnosis and treatment of patients suffering from vascular disease is tremendous. Empowering models of the full arterial tree can provide insight into diseases such as arterial hypertension and enables the study of the influence of local factors on global hemodynamics. We present a new, highly scalable implementation of the lattice Boltzmann method which addresses key challenges such as multiscale coupling, limited memory capacity and bandwidth, and robust load balancing in complex geometries. We demonstrate the strong scaling of a three-dimensional, high-resolution simulation of hemodynamics in the systemic arterial tree on 1,572,864 cores of Blue Gene/Q. Faster calculation of flow in full arterial networks enables unprecedented risk stratification on a perpatient basis. In pursuit of this goal, we have introduced computational advances that significantly reduce time-to-solution for biofluidic simulations.

References

  1. J. Alastruey, A. W. Khir, K. S. Matthys, P. Segers, S. J. Sherwin, P. R. Verdonck, K. H. Parker, and J. Peiró. Pulse wave propagation in a model human arterial network: Assessment of 1-d visco-elastic simulations against in vitromeasurements. Journal of Biomechanics, 44(12):2250--2258, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  2. J. Baerentzen and H. Aanaes. Signed distance computation using the angle weighted pseudonormal. IEEE Transactions on Visualization and Computer Graphics, 11(3):243--253, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. M. Bernaschi, M. Bisson, T. Endo, S. Matsuoka, M. Fatica, and S. Melchionna. Petaflop biofluidics simulations on a two million-core system. In Proceedings of the 2011 International Conference for High Performance Computing, Networking, Storage and Analysis, page 4. ACM, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. J. Berry, W. Borden, D. Bravata, S. Dai, E. Ford, et al. Heart disease and stroke statistics?2012 update. Circulation, 125:e2--e220, 2012.Google ScholarGoogle Scholar
  5. J. Carter, M. Soe, L. Oliker, Y. Tsuda, G. Vahala, L. Vahala, and A. Macnab. Magnetohydrodynamic turbulence simulations on the earth simulator using the lattice Boltzmann method. In Proceedings of the 2005 ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis, SC '05. IEEE Computer Society, 2005.Google ScholarGoogle Scholar
  6. J. Cebral, M. Castro, J. Burgess, R. Pergolizzi, M. Sheridan, and C. Putman. Characterization of cerebral aneurysms for assessing risk of rupture by using patient-specific computational hemodynamics models. American Journal of Neuroradiology, 26(10):2550--2559, 2005.Google ScholarGoogle Scholar
  7. A. B. I. Collaboration et al. Ankle brachial index combined with Framingham risk score to predict cardiovascular events and mortality: a meta-analysis. JAMA: the Journal of the American Medical Association, 300(2):197, 2008.Google ScholarGoogle ScholarCross RefCross Ref
  8. J. S. Coogan, J. D. Humphrey, and C. A. Figueroa. Computational simulations of hemodynamic changes within thoracic, coronary, and cerebral arteries following early wall remodeling in response to distal aortic coarctation. Biomechanics and modeling in mechanobiology, 12(1):79--93, 2013.Google ScholarGoogle Scholar
  9. A. V. Doobay and S. S. Anand. Sensitivity and specificity of the ankle--brachial index to predict future cardiovascular outcomes a systematic review. Arteriosclerosis, Thrombosis, and Vascular Biology, 25(7):1463--1469, 2005.Google ScholarGoogle Scholar
  10. C. Godenschwager, F. Schornbaum, M. Bauer, H. Köstler, and U. Rüde. A framework for hybrid parallel flow simulations with a trillion cells in complex geometries. In Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis, page 35. ACM, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. L. Grinberg, D. Fedosov, and G. Karniadakis. Parallel multiscale simulations of a brain aneurysm. Journal of Computational Physics, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. L. Grinberg, V. Morozov, D. Fedosov, J. Insley, M. Papka, K. Kumaran, and G. Karniadakis. A new computational paradigm in multiscale simulations: Application to brain blood flow. In Proceedings of the 2011 International Conference for High Performance Computing, Networking, Storage and Analysis, pages 1--12. IEEE, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. R. Haring, M. Ohmacht, T. W. Fox, M. K. Gschwind, D. L. Satterfield, K. Sugavanam, P. W. Coteus, P. Heidelberger, M. A. Blumrich, R. W. Wisniewski, et al. The IBM Blue Gene/Q compute chip. Micro, IEEE, 32(2):48--60, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. M. Hecht and J. Harting. Implementation of on-site velocity boundary conditions for D3Q19 lattice Boltzmann simulations. Journal of Statistical Mechanics: Theory and Experiment, 2010(01):P01018, 2010.Google ScholarGoogle ScholarCross RefCross Ref
  15. F. Higuera, S. Succi, and R. Benzi. Lattice gas dynamics with enhanced collisions. EPL (Europhysics Letters), 9(4):345--349, 1989.Google ScholarGoogle Scholar
  16. T. J. Hughes and J. Lubliner. On the one-dimensional theory of blood flow in the larger vessels. Mathematical Biosciences, 18(1):161--170, 1973.Google ScholarGoogle ScholarCross RefCross Ref
  17. O. Malaspinas, B. Chopard, and J. Latt. General regularized boundary condition for multi-speed lattice Boltzmann models. Computers & Fluids, 49(1):29--35, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  18. A. L. Marsden, A. J. Bernstein, V. M. Reddy, S. C. Shadden, R. L. Spilker, F. P. Chan, C. A. Taylor, and J. A. Feinstein. Evaluation of a novel y-shaped extracardiac fontan baffle using computational fluid dynamics. The Journal of Thoracic and Cardiovascular Surgery, 137(2):394--403, 2009.Google ScholarGoogle ScholarCross RefCross Ref
  19. G. McNamara and G. Zanetti. Use of the Boltzmann equation to simulate lattice-gas automata. Physical Review Letters, 61(20):2332--2335, 1988.Google ScholarGoogle ScholarCross RefCross Ref
  20. S. Melchionna, M. Bernaschi, S. Succi, E. Kaxiras, F. J. Rybicki, D. Mitsouras, A. U. Coskun, and C. L. Feldman. Hydrokinetic approach to large-scale cardiovascular blood flow. Computer Physics Communications, 181(3):462--472, 2010.Google ScholarGoogle ScholarCross RefCross Ref
  21. J. M. Murabito, R. B. D?Agostino, H. Silbershatz, and P. W. Wilson. Intermittent claudication a risk profile from the framingham heart study. Circulation, 96(1):44--49, 1997.Google ScholarGoogle ScholarCross RefCross Ref
  22. J. M. Murabito, J. C. Evans, M. G. Larson, K. Nieto, D. Levy, and P. W. Wilson. The ankle-brachial index in the elderly and risk of stroke, coronary disease, and death: the framingham study. Archives of Internal Medicine, 163(16):1939--1942, 2003.Google ScholarGoogle ScholarCross RefCross Ref
  23. C. M. Papamichael, J. P. Lekakis, K. S. Stamatelopoulos, T. G. Papaioannou, M. K. Alevizaki, A. T. Cimponeriu, J. E. Kanakakis, A. Papapanagiotou, A. T. Kalofoutis, and S. F. Stamatelopoulos. Ankle-brachial index as a predictor of the extent of coronary atherosclerosis and cardiovascular events in patients with coronary artery disease. The American journal of cardiology, 86(6):615--618, 2000.Google ScholarGoogle Scholar
  24. K. Pekkan, B. Whited, K. Kanter, S. Sharma, D. De Zelicourt, K. Sundareswaran, D. Frakes, J. Rossignac, and A. Yoganathan. Patient-specific surgical planning and hemodynamic computational fluid dynamics optimization through free-form haptic anatomy editing tool (surgem). Medical & Biological Engineering & Computing, 46(11):1139--1152, 2008.Google ScholarGoogle ScholarCross RefCross Ref
  25. C. S. Peskin. Numerical analysis of blood flow in the heart. Journal of Computational Physics, 25(3):220--252, 1977.Google ScholarGoogle ScholarCross RefCross Ref
  26. A. Peters, S. Melchionna, E. Kaxiras, J. Lätt, J. Sircar, M. Bernaschi, M. Bison, and S. Succi. Multiscale simulation of cardiovascular flows on the IBM Blue Gene/P: Full heart-circulation system at red-blood cell resolution. In Proceedings of the 2010 ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis, SC '10, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. A. Peters Randles, V. Kale, J. R. Hammond, W. Gropp, and E. Kaxiras. Performance analysis of the lattice Boltzmann model beyond Navier-Stokes. In Proceedings of the 27th IEEE International Parallel and Distributed Processing Symposium, IPDPS '13, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. T. Pohl, F. Deserno, N. Thurey, U. Rude, P. Lammers, G. Wellein, and T. Zeiser. Performance evaluation of parallel large-scale lattice Boltzmann applications on three supercomputing architectures. In Proceedings of the 2004 ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis, SC '04. IEEE Computer Society, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. I. Rahimian, A. and Lashuk, S. Veerapaneni, A. Chandramowlishwaran, D. Malhotra, L. Moon, R. Sampath, A. Shringarpure, J. Vetter, R. Vuduc, et al. Petascale direct numerical simulation of blood flow on 200k cores and heterogeneous architectures. In Proceedings of the 2010 ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis, pages 1--11. IEEE Computer Society, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. A. Randles, E. Draeger, and P. Bailey. Massively parallel simulations of hemodynamics in the primary large arteries of the human vasculature. In Journal of Computational Science, ICCS15, 2015. accepted.Google ScholarGoogle ScholarCross RefCross Ref
  31. H. E. Resnick, R. S. Lindsay, M. M. McDermott, R. B. Devereux, K. L. Jones, R. R. Fabsitz, and B. V. Howard. Relationship of high and low ankle brachial index to all-cause and cardiovascular disease mortality the strong heart study. Circulation, 109(6):733--739, 2004.Google ScholarGoogle ScholarCross RefCross Ref
  32. P. Reymond, F. Merenda, F. Perren, D. Rüfenacht, and N. Stergiopulos. Validation of a one-dimensional model of the systemic arterial tree. American Journal of Physiology-Heart and Circulatory Physiology, 297(1):H208--H222, 2009.Google ScholarGoogle ScholarCross RefCross Ref
  33. G. D. Smith, M. Shipley, and G. Rose. Intermittent claudication, heart disease risk factors, and mortality. the Whitehall study. Circulation, 82(6):1925--1931, 1990.Google ScholarGoogle ScholarCross RefCross Ref
  34. N. Stergiopulos, D. Young, and T. Rogge. Computer simulation of arterial flow with applications to arterial and aortic stenoses. Journal of Biomechanics, 25(12):1477--1488, 1992.Google ScholarGoogle ScholarCross RefCross Ref
  35. S. Succi. The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. Oxford University Press, 2001.Google ScholarGoogle ScholarCross RefCross Ref
  36. C. Taylor, T. Hughes, and C. Zarins. Finite element modeling of blood flow in arteries. Computer Methods in Applied Mechanics and Engineering, 158(1):155--196, 1998.Google ScholarGoogle ScholarCross RefCross Ref
  37. I. B. G. team. The IBM Blue Gene project. IBM Journal of Research and Development, 57(1/2):0, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. N. Westerhof, F. Bosman, C. J. De Vries, and A. Noordergraaf. Analog studies of the human systemic arterial tree. Journal of Biomechanics, 2(2):121--143, 1969.Google ScholarGoogle ScholarCross RefCross Ref
  39. S. Williams, L. Oliker, J. Carter, and J. Shalf. Extracting ultra-scale lattice Boltzmann performance via hierarchical and distributed auto-tuning. In Proceedings of the 2011 ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis, SC '11, pages 1--10. IEEE Computer Society, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. A. J. Wood and W. R. Hiatt. Medical treatment of peripheral arterial disease and claudication. New England Journal of Medicine, 344(21):1608--1621, 2001.Google ScholarGoogle ScholarCross RefCross Ref
  41. N. Xiao, J. Humphrey, and C. Figueroa. Multi-scale computational model of three-dimensional hemodynamics within a deformable full-body arterial network. Journal of Computational Physics, 244:22--40, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. G. Xiong and C. A. Taylor. Virtual stent grafting in personalized surgical planning for treatment of aortic aneurysms using image-based computational fluid dynamics. In Medical Image Computing and Computer-Assisted Intervention--MICCAI 2010, pages 375--382. Springer, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Q. Zou and X. He. On pressure and velocity boundary conditions for the lattice Boltzmann BGK model. Physics of Fluids, 9:1591, 1997.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Massively parallel models of the human circulatory system

                Recommendations

                Comments

                Login options

                Check if you have access through your login credentials or your institution to get full access on this article.

                Sign in
                • Published in

                  cover image ACM Conferences
                  SC '15: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis
                  November 2015
                  985 pages
                  ISBN:9781450337236
                  DOI:10.1145/2807591
                  • General Chair:
                  • Jackie Kern,
                  • Program Chair:
                  • Jeffrey S. Vetter

                  Copyright © 2015 ACM

                  Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

                  Publisher

                  Association for Computing Machinery

                  New York, NY, United States

                  Publication History

                  • Published: 15 November 2015

                  Permissions

                  Request permissions about this article.

                  Request Permissions

                  Check for updates

                  Qualifiers

                  • research-article

                  Acceptance Rates

                  SC '15 Paper Acceptance Rate79of358submissions,22%Overall Acceptance Rate1,516of6,373submissions,24%

                PDF Format

                View or Download as a PDF file.

                PDF

                eReader

                View online with eReader.

                eReader