skip to main content
10.1145/2808492.2808539acmotherconferencesArticle/Chapter ViewAbstractPublication PagesicimcsConference Proceedingsconference-collections
research-article

What makes the stego image undetectable?

Authors Info & Claims
Published:19 August 2015Publication History

ABSTRACT

Steganography is the art of hiding information in ways that prevents the detection of hidden messages. Image steganography, which hides messages into a cover image for secret transmission, attracts increasing attention in social media era. Currently, most works focus on designing message embedding algorithms to avoid the stego images being distinguished from normal ones via visual observation or statistical analysis. This paper aims to make the detection of the stego images more difficult by selecting the suitable cover images. We propose a new measure to evaluate the hiding ability of the cover image based on Fisher Information Matrix and Gaussian Mixture Model. Experiments on standard dataset validate that the cover image with good hiding ability can improve the performance of various steganography algorithms obviously. Moreover, the proposed measure provides a statistical explanation of the existing cover image selection techniques and shows better performance against steganalysis.

References

  1. P. Bas, T. Filler, and T. Pevny. Boss (break our steganography system). http://boss.gipsa-lab.grenoble-inp.fr, 2009.Google ScholarGoogle Scholar
  2. W. Bender, D. Gruhl, N. Morimoto, and A. Lu. Techniques for data hiding. IBM System Journal, 35(3):313--336, 1996. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. C. Cachin. An information theoretic model for steganography. Information and Computation, 192(1):41--56, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. S. Dumitrescu, X. Wu, and Z. Wang. Detection of lsb steganography via sample pair analysis. IEEE Transactions on Signal Processing, 51(7):1995--2007, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. T. Filler and J. Fridrich. Complete characterization of perfectly secure stegosystems with mutually independent embedding operation. In ICASSP, pages 1429--1432, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. T. Filler and J. Fridrich. Fisher information determines capacity of epsilon-secure steganography. In Information Hiding Workshop, pages 31--47, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. T. Filler and J. Fridrich. Gibbs construction in steganography. IEEE Transactions on Information Forensics and Security, 5(4):705--720, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. J. Fridrich. Effect of cover quantization on steganographic fisher information. IEEE Transactions on Information Forensics and Security, 8(2):261--373, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. J. Fridrich and J. Kodovsky. Rich models for steganalysis of digital images. IEEE Transactions on Information Forensics and Security, 7(3):868--882, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. J. Fridrich, T. Pevny, and J. Kodovsky. Statistically undetectable jpeg steganography: dead ends, challenges, and opportunities. In ACM Multimedia and Security Workshop, pages 3--14, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. V. Holub and J. Fridrich. Low-complexity features for jpeg steganalysis using undecimated dct. IEEE Transactions on Information Forensics and Security, 10(2):219--228, 2015.Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. V. Holub, J. Fridrich, and T. Denemark. Universal distortion function for steganography in an arbitrary domain. EURASIP Journal on Information Security, 2014(1):1--13, 2014.Google ScholarGoogle ScholarCross RefCross Ref
  13. S. Q. Jiang, C. S. Xu, Y. Rui, A. D. Bimbo, and H. X. Yao. Preface: internet multimedia computing and service. Multimedia Tools and Applications, 70(2):599--603, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. N. F. Johnson and S. Jajodia. Exploring steganography: Seeing the unseen. IEEE Computer, 31(2):26--34, 1998. Google ScholarGoogle ScholarCross RefCross Ref
  15. E. Kawaguchi and R. O. Eason. Principle and applications of bpcs steganography. Multimedia Systems and Applications, 3528: 464--473, 1998.Google ScholarGoogle ScholarCross RefCross Ref
  16. A. D. Ker. A capacity result for batch steganography. IEEE Signal Processing Letters, 14(8):525--528, 2007.Google ScholarGoogle ScholarCross RefCross Ref
  17. A. D. Ker. Estimating steganographic fisher information in real images. In Information Hiding Workshop, pages 73--88, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. M. Kharrazi, H. T. Sencar, and N. Memon. Cover selection for steganographic embedding. In IEEE International Conference on Image Processing, pages 117--120, 2006.Google ScholarGoogle ScholarCross RefCross Ref
  19. J. Kodovsky and J. Fridrich. Influence of embedding strategies on security of steganographic methods in the jpeg domain. In SPIE, pages 1--12, 2008.Google ScholarGoogle Scholar
  20. J. Kodovsky and J. Fridrich. Steganalysis in resized images. In ICASSP, pages 2857--2861, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  21. B. Li, J. He, J. Huang, and Y. Q. Shi. A survey on image steganography and steganalysis. Journal of Information Hiding and Multimedia Signal Processing, 2(2):142--172, 2011.Google ScholarGoogle Scholar
  22. W. Luo, F. Huang, and J. Huang. Edge adaptive image steganography based on lsb matching revisited. IEEE Transactions on Information Forensics and Security, 5(2):201--214, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. P. Mielikainen. Lsb matching revisited. IEEE Signal Processing Letters, 13(5):285--287, 2006.Google ScholarGoogle ScholarCross RefCross Ref
  24. R. M. Neal and G. E. Hinton. A view of the em algorithm that justifies incremental, sparse, and other variants. Learning in Graphical Models, pages 355--368, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. A. V. D. Oord and B. Schrauwen. The student-t mixture as a natural image patch prior with application to image compression. The Journal of Machine Learning Research, 15: 2061--2086, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. T. Pevny, T. Filler, and P. Bas. Using high-dimensional image models to perform highly undetectable steganography. In Information Hiding Conference, pages 161--177, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. N. Provos and P. Honey-man. Hide and seek: an introduction to steganography. IEEE Security and Privacy Magazine, 1(3):32--44, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. D. Reynolds. Gaussian mixture models. Encyclopedia of Biometric Recognition, pages 659--663, 2009.Google ScholarGoogle Scholar
  29. H. Sajedi and M. Jamzad. Secure cover selection steganography. Advances in Information Security and Assurance, 5576: 317--326, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. H. Sajedi and M. Jamzad. Using contourlet transform and cover selection for secure steganography. International Journal of Information Security, 9(5):337--352, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. P. Sallee. Model-based methods for steganography and steganalysis. International Journal of Image Graphics, 5(1):167--190, 2005.Google ScholarGoogle ScholarCross RefCross Ref
  32. J. T. Sang and C. S. Xu. Browse by chunks: Topic mining and organizing on web-scale social media. ACM Transactions on Multimedia Computing, Communications and Applications, 7(30):1--18, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. A. Sarkar, K. Solanki, U. Madhow, and B. S. Manjunath. Secure steganography: Statistical restoration of the second order dependencies for improved security. In ICASSP, pages 277--280, 2007.Google ScholarGoogle ScholarCross RefCross Ref
  34. L. J. Savage. On rereading r. a. fisher. The Annals of Statistics, 4(3):441--500, 1976.Google ScholarGoogle Scholar
  35. Y. Sun, D. Niu, G. Tang, and Z. Gao. Optimized lsb matching steganography based on fisher information. Journal of Multimedia, 7(4):295--302, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  36. H. Wang and S. Wang. Cyber warfare: Steganography vs. steganalysis. Communications of the ACM, 47(10):76--82, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. M. J. Z. Kermani. A robust steganography algorithm based on texture similarity using gabor filter. In IEEE Symposium on Signal processing and Information Technology, pages 578--582, 2005.Google ScholarGoogle ScholarCross RefCross Ref
  38. D. Zoran and Y. Weiss. From learning models of natural image patches to whole image restoration. In ICCV, pages 479--486, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. D. Zoran and Y. Weiss. Natural images, gaussian mixtures and dead leaves. In NIPS, pages 1745--1753, 2012.Google ScholarGoogle Scholar

Index Terms

  1. What makes the stego image undetectable?

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Other conferences
        ICIMCS '15: Proceedings of the 7th International Conference on Internet Multimedia Computing and Service
        August 2015
        397 pages
        ISBN:9781450335287
        DOI:10.1145/2808492
        • General Chairs:
        • Ramesh Jain,
        • Shuqiang Jiang,
        • Program Chairs:
        • John Smith,
        • Jitao Sang,
        • Guohui Li

        Copyright © 2015 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 19 August 2015

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

        Acceptance Rates

        ICIMCS '15 Paper Acceptance Rate20of128submissions,16%Overall Acceptance Rate163of456submissions,36%

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader