skip to main content
10.1145/2809695.2809718acmconferencesArticle/Chapter ViewAbstractPublication PagessensysConference Proceedingsconference-collections
research-article

Smart Devices are Different: Assessing and MitigatingMobile Sensing Heterogeneities for Activity Recognition

Published:01 November 2015Publication History

ABSTRACT

The widespread presence of motion sensors on users' personal mobile devices has spawned a growing research interest in human activity recognition (HAR). However, when deployed at a large-scale, e.g., on multiple devices, the performance of a HAR system is often significantly lower than in reported research results. This is due to variations in training and test device hardware and their operating system characteristics among others. In this paper, we systematically investigate sensor-, device- and workload-specific heterogeneities using 36 smartphones and smartwatches, consisting of 13 different device models from four manufacturers. Furthermore, we conduct experiments with nine users and investigate popular feature representation and classification techniques in HAR research. Our results indicate that on-device sensor and sensor handling heterogeneities impair HAR performances significantly. Moreover, the impairments vary significantly across devices and depends on the type of recognition technique used. We systematically evaluate the effect of mobile sensing heterogeneities on HAR and propose a novel clustering-based mitigation technique suitable for large-scale deployment of HAR, where heterogeneity of devices and their usage scenarios are intrinsic.

References

  1. M. V. Albert, S. Toledo, M. Shapiro, and K. Kording. Using mobile phones for activity recognition in parkinson's patients. Frontiers in neurology, 3, 2012.Google ScholarGoogle Scholar
  2. O. Amft. On the need for quality standards in activity recognition using ubiquitous sensors. In How To Do Good Research In Activity Recognition. Workshop in conjunction with Pervasive, 2010.Google ScholarGoogle Scholar
  3. S. A. Antos, M. V. Albert, and K. P. Kording. Hand, belt, pocket or bag: Practical activity tracking with mobile phones. Journal of Neuroscience Methods, 231:22--30, 2014.Google ScholarGoogle ScholarCross RefCross Ref
  4. O. Banos, A. Calatroni, M. Damas, H. Pomares, I. Rojas, H. Sagha, J. del R Millán, G. Troster, R. Chavarriaga, and D. Roggen. Kinect= imu? learning mimo signal mappings to automatically translate activity recognition systems across sensor modalities. In IEEE Int. Symp. Wearable Computers (ISWC), 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. L. Bao and S. S. Intille. Activity recognition from user-annotated acceleration data. In 2nd Intl. Conf. Pervasive Computing (Pervasive), pages 1--17, 2004.Google ScholarGoogle ScholarCross RefCross Ref
  6. C. Barthold, K. Subbu, and R. Dantu. Evaluation of gyroscope-embedded mobile phones. In IEEE Intl. Conf. Systems, Man, and Cybernetics (SMC), Oct 2011.Google ScholarGoogle ScholarCross RefCross Ref
  7. P. Batista, C. Silvestre, P. Oliveira, and B. Cardeira. Accelerometer calibration and dynamic bias and gravity estimation: Analysis, design, and experimental evaluation. IEEE Trans. Control Systems Technology, 19(1):1128--1137, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  8. S. Bhattacharya, H. Blunck, M. Kjærgaard, and P. Nurmi. Robust and energy-efficient trajectory tracking for mobile devices. IEEE Trans. Mobile Computing (TMC), 14(2):430--443, 2015.Google ScholarGoogle ScholarCross RefCross Ref
  9. S. Bhattacharya, P. Nurmi, N. Hammerla, and T. Plötz. Using unlabeled data in a sparse-coding framework for human activity recognition. Pervasive and Mobile Computing, 15(0):242--262, 2014.Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. G. Bieber, P. Koldrack, C. Sablowski, C. Peter, and B. Urban. Mobile physical activity recognition of stand-up and sit-down transitions for user behavior analysis. In Intl. Conf. Pervasive Technologies Related to Assistive Environments (PETRA). ACM, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. G. Bieber, J. Voskamp, and B. Urban. Activity recognition for everyday life on mobile phones. In Universal Access in Human-Computer Interaction (UAHCI). Springer, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. C. M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. H. Blunck, N. O. Bouvin, T. Franke, K. Grønbæk, M. B. Kjærgaard, P. Lukowicz, and M. Wüstenberg. On heterogeneity in mobile sensing applications aiming at representative data collection. In UbiComp '13 Adjunct, pages 1087--1098. ACM, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. T. Brezmes, J.-L. Gorricho, and J. Cotrina. Activity recognition from accelerometer data on a mobile phone. In Intl. Work-Conf. Artificial Neural Networks (IWANN). Springer, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. A. Bulling, U. Blanke, and B. Schiele. A tutorial on human activity recognition using body-worn inertial sensors. Computing Surveys (CSUR, 46(3), 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. F. Buttussi and L. Chittaro. Mopet: A context-aware and user-adaptive wearable system for fitness training. Artificial Intelligence in Medicine, 42(2):153--163, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Y. Chen, Z. Zhao, S. Wang, and Z. Chen. Extreme learning machine-based device displacement free activity recognition model. Soft Computing, 16(9), 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. J. Dai, X. Bai, Z. Yang, Z. Shen, and D. Xuan. Mobile phone-based pervasive fall detection. Personal Ubiquitous Comput., 14(7), 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. S. Dey, N. Roy, W. Xu, R. R. Choudhury, and S. Nelakuditi. Accelprint: Imperfections of accelerometers make smartphones trackable. Network and Distributed System Security Symp. (NDSS), 2014.Google ScholarGoogle ScholarCross RefCross Ref
  20. D. Figo, P. C. Diniz, D. R. Ferreira, and J. M. P. Cardoso. Preprocessing techniques for context recognition from accelerometer data. Personal and Ubiquitous Computing, 14(7):645--662, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. B. J. Frey and D. Dueck. Clustering by passing messages between data points. science, 315(5814):972--976, 2007.Google ScholarGoogle Scholar
  22. F. Gulmammadov. Analysis, modeling and compensation of bias drift in mems inertial sensors. IEEE 4th Intl. Conf. Recent Advances in Space Technologies (RAST), June 2009.Google ScholarGoogle ScholarCross RefCross Ref
  23. N. Y. Hammerla, R. Kirkham, P. Andras, and T. Ploetz. On preserving statistical characteristics of accelerometry data using their empirical cumulative distribution. In ISWC. ACM, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. S. Hemminki, P. Nurmi, and S. Tarkoma. Accelerometer-based transportation mode detection on smartphones. In 11th ACM Conf. Embedded Networked Sensor Systems (SenSys), 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. A. Henpraserttae, S. Thiemjarus, and S. Marukatat. Accurate activity recognition using a mobile phone regardless of device orientation and location. In IEEE Body Sensor Networks Conference (BSN), 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. J. D. Hol. Sensor fusion and calibration of inertial sensors, vision, Ultra-Wideband and GPS. PhD thesis, Linköping University, Sweden, 2011.Google ScholarGoogle Scholar
  27. Y. Kawahara, H. Kurasawa, and H. Morikawa. Recognizing User Context Using Mobile Handsets with Acceleration Sensors. In IEEE Intl. Conf. Portable Information Devices (PORTABLE), pages 1--5, 2007.Google ScholarGoogle Scholar
  28. K. Kunze and P. Lukowicz. Dealing with sensor displacement in motion-based onbody activity recognition systems. In ACM Intl. Joint Conf. on Pervasive and Ubiquitous Computing (UbiComp), pages 20--29. ACM, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. J. R. Kwapisz, G. M. Weiss, and S. A. Moore. Activity recognition using cell phone accelerometers. In SIGKDD Explorations Newsletter. ACM, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. N. Lane, E. Miluzzo, H. Lu, D. Peebles, T. Choudhury, and A. Campbell. A survey of mobile phone sensing. Communications Magazine, IEEE, 48(9), 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. J. Lester, T. Choudhury, and G. Borriello. A practical approach to recognizing physical activities. In 4th Intl. Conf. Pervasive Computing (Pervasive), 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. B. Logan, J. Healey, M. Philipose, E. M. Tapia, and S. Intille. A long-term evaluation of sensing modalities for activity recognition. In Proceedings of the 10th international conference on Ubiquitous computing (UbiComp), 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. J. C. Lötters, J. Schipper, P. H. Veltink, W. Olthuis, and P. Bergveld. Procedure for in-use calibration of triaxial accelerometers in medical applications. Sensors and Actuators A: Physical, 68(1--3):221--228, 1998.Google ScholarGoogle Scholar
  34. S. Mazilu, M. Hardegger, Z. Zhu, D. Roggen, G. Troster, M. Plotnik, and J. M. Hausdorff. Online detection of freezing of gait with smartphones and machine learning techniques. In IEEE Intl. Conf. Pervasive Computing Technologies for Healthcare (PervasiveHealth), pages 123--130. IEEE, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  35. Q. McNemar. Note on the sampling error of the difference between correlated proportions or percentages. Psychometrika, 12(2):153--157, 1947.Google ScholarGoogle ScholarCross RefCross Ref
  36. OpenSignal. Android Fragmentation Visualized. http://opensignal.com/reports/2014/ android-fragmentation/, 2014. Accessed 17-Mar-2015. {37} J. Pärkkä, M. Ermes, P. Korpipää, J. Mäntyjärvi, J. Peltola, and I. Korhonen. Activity classification using realistic data from wearable sensors. Biomedicine, 10(1):119--128, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. C. Pham and P. Olivier. Slice&dice: Recognizing food preparation activities using embedded accelerometers. In Intl. Conf. Ambient Intelligent (AmI), 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. T. Plötz, N. Y. Hammerla, and P. Olivier. Feature learning for activity recognition in ubiquitous computing. In Intl. Joint Conf. Artificial Intelligence (IJCAI), volume 22, page 1729, 2011. {40} T. Plötz, P. Moynihan, C. Pham, and P. Olivier. Activity recognition and healthier food preparation. In Activity Recognition in Pervasive Intelligent Environments. Atlantis Press, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. S. J. Preece, J. Y. Goulermas, L. P. J. Kenney, and D. Howard. A comparison of feature extraction methods for the classification of dynamic activities from accelerometer data. IEEE Trans. Biomedical Engineering, 56(3):871--879, 2009.Google ScholarGoogle ScholarCross RefCross Ref
  40. S. Reddy, M. Mun, J. Burke, D. Estrin, M. Hansen, and M. Srivastava. Using mobile phones to determine transportation modes. ACM Trans. Sen. Netw., 6(2):13:1--13:27, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. H. Sagha, S. Digumarti, J. del R Millan, R. Chavarriaga, A. Calatroni, D. Roggen, and G. Tröster. Benchmarking classification techniques using the Opportunity human activity dataset. In IEEE Intl. Conf. Systems, Man, and Cybernetics (SMC), 2011.Google ScholarGoogle ScholarCross RefCross Ref
  42. P. Siirtola and J. Röning. Recognizing human activities user-independently on smartphones based on accelerometer data. Intl. Journ. Interactive Multimedia and Artificial Intelligence, 1(5), 2012.Google ScholarGoogle Scholar
  43. X. Su, H. Tong, and P. Ji. Activity recognition with smartphone sensors. Tsinghua Science and Technology, 19(3):235--249, 2014.Google ScholarGoogle ScholarCross RefCross Ref
  44. L. Sun, D. Zhang, B. Li, B. Guo, and S. Li. Activity recognition on an accelerometer embedded mobile phone with varying positions and orientations. In Ubiquitous intelligence and computing (UIC). Springer, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. J. Yang. Toward physical activity diary: motion recognition using simple acceleration features with mobile phones. In 1st Intl. Workshop Interactive Multimedia for Consumer Electronics, pages 1--10. ACM, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Smart Devices are Different: Assessing and MitigatingMobile Sensing Heterogeneities for Activity Recognition

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      SenSys '15: Proceedings of the 13th ACM Conference on Embedded Networked Sensor Systems
      November 2015
      526 pages
      ISBN:9781450336314
      DOI:10.1145/2809695

      Copyright © 2015 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 1 November 2015

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      SenSys '15 Paper Acceptance Rate27of132submissions,20%Overall Acceptance Rate174of867submissions,20%

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader